关于正子群的共轭类图

Pub Date : 2022-07-26 DOI:10.1142/s1005386722000335
Ruifang Chen, Xianhe Zhao
{"title":"关于正子群的共轭类图","authors":"Ruifang Chen, Xianhe Zhao","doi":"10.1142/s1005386722000335","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be a finite group and [Formula: see text] a normal subgroup of [Formula: see text]. Denote by [Formula: see text] the graph whose vertices are all distinct [Formula: see text]-conjugacy class sizes of non-central elements in [Formula: see text], and two vertices of [Formula: see text] are adjacent if and only if they are not coprime numbers. We prove that if the center [Formula: see text] and [Formula: see text]is [Formula: see text]-regular for [Formula: see text], then either a section of [Formula: see text]is a quasi-Frobenius group or [Formula: see text] is a complete graph with [Formula: see text] vertices.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Conjugacy Class Graph of Normal Subgroup\",\"authors\":\"Ruifang Chen, Xianhe Zhao\",\"doi\":\"10.1142/s1005386722000335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let [Formula: see text] be a finite group and [Formula: see text] a normal subgroup of [Formula: see text]. Denote by [Formula: see text] the graph whose vertices are all distinct [Formula: see text]-conjugacy class sizes of non-central elements in [Formula: see text], and two vertices of [Formula: see text] are adjacent if and only if they are not coprime numbers. We prove that if the center [Formula: see text] and [Formula: see text]is [Formula: see text]-regular for [Formula: see text], then either a section of [Formula: see text]is a quasi-Frobenius group or [Formula: see text] is a complete graph with [Formula: see text] vertices.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1005386722000335\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386722000335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设[公式:见文]是一个有限群,[公式:见文]是[公式:见文]的正规子群。用[公式:见文]表示顶点均不同的图[公式:见文]-[公式:见文]中非中心元素的共轭类大小,且[公式:见文]的两个顶点相邻当且仅当它们不是素数。我们证明,如果中心[公式:见文]和[公式:见文]是[公式:见文]的[公式:见文]-正则,那么[公式:见文]的一个部分是一个拟frobenius群,或者[公式:见文]是一个具有[公式:见文]顶点的完全图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On Conjugacy Class Graph of Normal Subgroup
Let [Formula: see text] be a finite group and [Formula: see text] a normal subgroup of [Formula: see text]. Denote by [Formula: see text] the graph whose vertices are all distinct [Formula: see text]-conjugacy class sizes of non-central elements in [Formula: see text], and two vertices of [Formula: see text] are adjacent if and only if they are not coprime numbers. We prove that if the center [Formula: see text] and [Formula: see text]is [Formula: see text]-regular for [Formula: see text], then either a section of [Formula: see text]is a quasi-Frobenius group or [Formula: see text] is a complete graph with [Formula: see text] vertices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信