布尔函数单调性测试需要(几乎)n 1/2非自适应查询

Xi Chen, Anindya De, R. Servedio, Li-Yang Tan
{"title":"布尔函数单调性测试需要(几乎)n 1/2非自适应查询","authors":"Xi Chen, Anindya De, R. Servedio, Li-Yang Tan","doi":"10.1145/2746539.2746570","DOIUrl":null,"url":null,"abstract":"We prove a lower bound of Ω(n1/2-c), for all c> 0, on the query complexity of (two-sided error) non-adaptive algorithms for testing whether an n-variable Boolean function is monotone versus constant-far from monotone. This improves a ~Ω(n1/5) lower bound for the same problem that was obtained in [6], and is very close to the recent upper bound of ~O(n1/2/ε2) by Khot et al. [13].","PeriodicalId":20566,"journal":{"name":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":"{\"title\":\"Boolean Function Monotonicity Testing Requires (Almost) n 1/2 Non-adaptive Queries\",\"authors\":\"Xi Chen, Anindya De, R. Servedio, Li-Yang Tan\",\"doi\":\"10.1145/2746539.2746570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a lower bound of Ω(n1/2-c), for all c> 0, on the query complexity of (two-sided error) non-adaptive algorithms for testing whether an n-variable Boolean function is monotone versus constant-far from monotone. This improves a ~Ω(n1/5) lower bound for the same problem that was obtained in [6], and is very close to the recent upper bound of ~O(n1/2/ε2) by Khot et al. [13].\",\"PeriodicalId\":20566,\"journal\":{\"name\":\"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2746539.2746570\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2746539.2746570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

摘要

我们证明了(双边误差)非自适应算法的查询复杂度的下界Ω(n1/2-c),对于所有c> 0,用于测试n变量布尔函数是单调还是常数-远离单调。这改进了[6]中得到的相同问题的~Ω(n1/5)下界,并且非常接近Khot等人[13]最近得到的~O(n1/2/ε2)上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boolean Function Monotonicity Testing Requires (Almost) n 1/2 Non-adaptive Queries
We prove a lower bound of Ω(n1/2-c), for all c> 0, on the query complexity of (two-sided error) non-adaptive algorithms for testing whether an n-variable Boolean function is monotone versus constant-far from monotone. This improves a ~Ω(n1/5) lower bound for the same problem that was obtained in [6], and is very close to the recent upper bound of ~O(n1/2/ε2) by Khot et al. [13].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信