{"title":"用不规则性指标分析之字形和菱形苯系","authors":"M. Awais, Zulfiqar Ahmed, W. Khalid, E. Bonyah","doi":"10.1155/2023/4833683","DOIUrl":null,"url":null,"abstract":"<jats:p>Topological indices are numerical quantities associated with the molecular graph of a chemical structure. These indices are used to predict various properties of chemical structures. Imbalance-based analysis is an advanced technique used for chemical compounds with irregular characteristics. The molecular graphs of zigzag benzenoid systems <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <msub>\n <mrow>\n <mi>Z</mi>\n </mrow>\n <mrow>\n <mi>p</mi>\n </mrow>\n </msub>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> and rhombic benzenoid systems <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <msub>\n <mrow>\n <mi>R</mi>\n </mrow>\n <mrow>\n <mi>p</mi>\n </mrow>\n </msub>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> are inherently irregular. Therefore, applying the imbalance technique to these molecular structures plays an important role in predicting different properties. In this paper, we calculate sixteen irregularity indices for both <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <msub>\n <mrow>\n <mi>Z</mi>\n </mrow>\n <mrow>\n <mi>p</mi>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <msub>\n <mrow>\n <mi>R</mi>\n </mrow>\n <mrow>\n <mi>p</mi>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula> systems. By examining these indices, we aim to provide insights into the properties of these structures and ultimately contribute to a deeper understanding of the field.</jats:p>","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis of Zigzag and Rhombic Benzenoid Systems via Irregularity Indices\",\"authors\":\"M. Awais, Zulfiqar Ahmed, W. Khalid, E. Bonyah\",\"doi\":\"10.1155/2023/4833683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>Topological indices are numerical quantities associated with the molecular graph of a chemical structure. These indices are used to predict various properties of chemical structures. Imbalance-based analysis is an advanced technique used for chemical compounds with irregular characteristics. The molecular graphs of zigzag benzenoid systems <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M1\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>Z</mi>\\n </mrow>\\n <mrow>\\n <mi>p</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> and rhombic benzenoid systems <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M2\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>R</mi>\\n </mrow>\\n <mrow>\\n <mi>p</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> are inherently irregular. Therefore, applying the imbalance technique to these molecular structures plays an important role in predicting different properties. In this paper, we calculate sixteen irregularity indices for both <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M3\\\">\\n <msub>\\n <mrow>\\n <mi>Z</mi>\\n </mrow>\\n <mrow>\\n <mi>p</mi>\\n </mrow>\\n </msub>\\n </math>\\n </jats:inline-formula> and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M4\\\">\\n <msub>\\n <mrow>\\n <mi>R</mi>\\n </mrow>\\n <mrow>\\n <mi>p</mi>\\n </mrow>\\n </msub>\\n </math>\\n </jats:inline-formula> systems. By examining these indices, we aim to provide insights into the properties of these structures and ultimately contribute to a deeper understanding of the field.</jats:p>\",\"PeriodicalId\":43667,\"journal\":{\"name\":\"Muenster Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Muenster Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/4833683\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/4833683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Analysis of Zigzag and Rhombic Benzenoid Systems via Irregularity Indices
Topological indices are numerical quantities associated with the molecular graph of a chemical structure. These indices are used to predict various properties of chemical structures. Imbalance-based analysis is an advanced technique used for chemical compounds with irregular characteristics. The molecular graphs of zigzag benzenoid systems and rhombic benzenoid systems are inherently irregular. Therefore, applying the imbalance technique to these molecular structures plays an important role in predicting different properties. In this paper, we calculate sixteen irregularity indices for both and systems. By examining these indices, we aim to provide insights into the properties of these structures and ultimately contribute to a deeper understanding of the field.