用于监测人为景观的先进遥感技术

P. Tarolli
{"title":"用于监测人为景观的先进遥感技术","authors":"P. Tarolli","doi":"10.5194/EGUSPHERE-EGU21-3574","DOIUrl":null,"url":null,"abstract":"<p>In the last decade, a range of new remote-sensing techniques has led to a dramatic increase in terrain information, providing new opportunities to understand better Earth surface processes based on geomorphic signatures. Light detection and ranging (LiDAR) technology and, more recently, Structure from Motion (SfM) photogrammetry have the capability to produce sub-meter resolution digital elevation models (DEM) over large areas. LiDAR high-resolution topographic surveying is traditionally associated with high capital and logistical costs. Remotely Piloted Aircraft Systems (RPAS) on the other hand, offer a remote sensing tool capable of acquiring high-resolution spatial data at an unprecedented spatial and temporal resolution at an affordable cost, thus making multi-temporal surveys more flexible and easy to conduct. The scientific community is now providing a significantly increased amount of analyses on the Earth&#8217;s surface using RPAS in different environmental contexts and purpose. The goal of this talk is to provide a few useful examples of surveys through airborne LiDAR and RPAS monitoring of anthropogenic landscapes with a specific focus on mining (e.g., open-pit) and agriculture (e.g., terraces). In details, multi-temporal surveys and geomorphometric indexes (including novel landscape metrics) have been carried out and tested in key study areas in order to (i) map the extension of the investigated features, (ii) track any anthropogenic change through time, (iii) analyze the effects of the change related to changes in erosion.&#160;The proposed analysis can provide a basis for a large-scale and low-cost topographic survey for sustainable environmental planning and, for example, for the mitigation of anthropogenic environmental impacts.</p><p><strong>References</strong></p><ul><li>Chen J, Li K, Chang K-J, Sofia G,&#160;Tarolli P<strong>&#160;</strong>(2015).&#160;<span>Open-pit mining geomorphic feature characterization. <em>International Journal of Applied Earth Observation and Geoinformation</em>, 42, 76-86, doi:10.1016/j.jag.2015.05.001.</span></li>\n<li>Cucchiaro S, Fallu DJ, Zhang H, Walsh K, Van Oost K, Brown AG, Tarolli P&#160;(2020). Multiplatform-SfM and TLS Data Fusion for Monitoring Agricultural Terraces in Complex Topographic and Landcover Conditions. <em>Remote Sensing</em>, 12, 1946, doi:10.3390/rs12121946.</li>\n</ul><div><span><img src=\"data:image/png;base64, iVBORw0KGgoAAAANSUhEUgAAAfQAAAETCAYAAADAl/SwAAAABGdBTUEAALGPC/xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAAhGVYSWZNTQAqAAAACAAFARIAAwAAAAEAAQAAARoABQAAAAEAAABKARsABQAAAAEAAABSASgAAwAAAAEAAgAAh2kABAAAAAEAAABaAAAAAAAAAJYAAAABAAAAlgAAAAEAA6ABAAMAAAABAAEAAKACAAQAAAABAAAB9KADAAQAAAABAAABEwAAAACfzKOlAAAACXBIWXMAABcSAAAXEgFnn9JSAAACaWlUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAAPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1QIENvcmUgNi4wLjAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAgICAgICAgICB4bWxuczp0aWZmPSJodHRwOi8vbnMuYWRvYmUuY29tL3RpZmYvMS4wLyIKICAgICAgICAgICAgeG1sbnM6ZXhpZj0iaHR0cDovL25zLmFkb2JlLmNvbS9leGlmLzEuMC8iPgogICAgICAgICA8dGlmZjpPcmllbnRhdGlvbj4xPC90aWZmOk9yaWVudGF0aW9uPgogICAgICAgICA8dGlmZjpSZXNvbHV0aW9uVW5pdD4yPC90aWZmOlJlc29sdXRpb25Vbml0PgogICAgICAgICA8ZXhpZjpQaXhlbFlEaW1lbnNpb24+NzkxPC9leGlmOlBpeGVsWURpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6UGl4ZWxYRGltZW5zaW9uPjE0Mzc8L2V4aWY6UGl4ZWxYRGltZW5zaW9uPgogICAgICAgICA8ZXhpZjpDb2xvclNwYWNlPjE8L2V4aWY6Q29sb3JTcGFjZT4KICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CiAgIDwvcmRmOlJERj4KPC94OnhtcG1ldGE+Ctk9fnoAAEAASURBVHgB7L3ZjyVZnuf1u/u++L5FeHhsmRm5VnVtXTXVTQ/MDDO0QEjASz/wwAMjHhAg8a+0eEE8IRASQgh1ixGj6emmi6rqqu6qzMo9IzJWD9+Xe/3uO5+vXT8ZVpb3untELhWRZZYZfo6d8zvHjv3Mrv3234lk/uX/8D/byP6TiNmhmSWMk/AIMRBiIMRAiIEQAyEGnmcMQLVtNDSLZCg/aq7u/TgeGY7mI+l8etSur1k0JoDTOxDwRQ7B+2GD55pjUttZ7epzx7Sxrl/l08JcBH7a/G6sKy96fT+cf6z/Oq6ufh3n4VUwZ83l+lzph/e3qX3acRE4wehw6z1vTLA/eD6e7fy/k8apTYfWMq3frdMD9MFNgncwrrwIjIN15UXHTIOb1D6pzV3vvDI4dtq5a1epI4hTf38Qp4J3/arr8J/76+Pe8d9p7cHxFzn3z/tV1INrdecq3eHHi+t3fe7cla79WUt3Xf81Nde0dtcXhPdfP7g2d+7mFOxZ4y9yDXc9N7f/XHU3f7DfwX1Z5Red3z/e1YOlf63BvuD5JFjXdgoLPY/EUzbqtZdsayUSp7tnw76gujYcJM589m4uf+nW4NqC567dlf5+f931q5zW7od5lvqzzusfp7o73Hvmzs8q/XOcBTetzz/eX58GP639rLGuT6U7LnqPbqzG+etunmB5EZjgmIucu7Vr3e4arjxv/EXgLgJz3nXU/6zzuHGunHat8/qfZg3+ufz1add27WfBBvuC526OL7v8uq6jdQevNenc3d9Zv7PgODcmWJ4F96x9/mucNYcfzl/XGB1n3d8Y4vy/z3L982f9aiDcWl2pq/jr087VfhFcfTbXaDga9mMM6dnqSyMR9NPhI5URd6Z5L3QELx48D07i7/fX/XDT2v0wz1J/1nn94/z1p1nDs45z1/CP99dd/0XLs8a6PldedE7B+cf469PmuAjMtLFntfvndXVXnjVOfReBuwjMede56LUmzeOu78pJMBed/7w53Nx+OH/d9U8rz4IN9gXPp835Rdu/rutoncFrnXc+7d6C454F7qw5zurzX+uicF90jH+8v/4s1/eP/zrrbq2u1LX99Yucn7XeJ3N5tZF59NviNoTUi9rrn3d8VnENYRliIMRAiIEQAyEGQgw8VxgQLRf91r/xwuIWxab+2xT9uVpyuJgQAyEGQgyEGAgxEGIgiAG/8D2uI6ELyNchav9EnA/O8PlzDfXD+8/99c+PHF/WP3YSjL8tOF/w3A8brD8NrMZOg3ftKnWcMkm/VY57nu2vmz84elp7EO6880nrDo7xX8tfD8JNOz9rjLu+xj7Nsxd8cN7guYNR+bRzu7HnjXPrPw9O8511BNcePD9rrPr88P66GzepzfW58llg3BiVOi6CBzdG8K7uSrXpcOeuHLdO/nsRmEkjn3XcpLkmtZ03/7T+YLs7D5bumq7dnbtyWrv6/X3+erDPzeXKIKxrv2ip8TomvSdubn85DVbtF4UT7Fd5+Nfhvy/Xrmu7erD0r8v1ubbguWtXGez7rXOdjA/Z0MfAIuTu8FVd05llEN5/7q9PmuS8/uCYIHzwPAjvP38aWI2bBu9vd/Vg6b/u09bdXMFx09qDcBc5d3O5MjjG3+6vB+GmnV9kzEVggvMHxwTPHfy0dtc/rbzouIvCTbuO2oNzBM/PGhscP2nspLbgnM8C4x/jrwfn9p/74VzdlQ7OnbvStU8qLwLzZY6bNNektvPWNa0/2O7Og6W7pmt3566c1q5+f5+/Huxzc7kyCOvan6acNodrd6Xm9NeD1/D3+etBuK/63F3ble56/nNXD5YOVqXrc23Bc9c+FZYBGnNKvyHo3pla/EPDeoiBEAMhBkIMhBgIMfDcY+AJ7Y6H9Py5f1rhAkMMhBgIMRBiIMTABAxAzD2nuDFRH6vcP6PqE+DDphADIQZCDIQYCDEQYuC5x4BP5e7W+kR8dy1hGWIgxECIgRADIQZCDDyPGBDN9rzbiUPXoXO/U5zXGP4JMRBiIMRAiIEQAyEGnmsM+GRwCPoQeq7/FFng63mu7yBcXIiBEAMhBkIMhBj4/caAo9sj5+Xu7dXi4WRM1H+/0RPefYiBEAMhBkIMhBh4cTDwRAz/G6dyp+mz1s8qL84dhSsNMRBiIMRAiIEQA7+PGJB0rhTuHKdOcaqGhFxYCI8QAyEGQgyEGAgx8OJgANod1Wr/HZ+E7gh6SNdfnOcYrjTEQIiBEAMhBn5/MaDUs6LZnoQulbuM6GoJCfnv70sR3nmIgRADIQZCDLx4GPCc4Z4Q73HYmncbTxpfvLsKVxxiIMRAiIEQAyEGfl8xMKbfp6lfOfmMnqvi30JmEoKmwbhJ3Piz4BzMpPmfpm3aNc6aI7jOSbDnzXte/xed8yJrnHSNL9IWvOa0e5zWrmuf1efWdhaM+nSc9X6cBXNW33jmJy/7WddwsF9m6b/v89bp7/ePu+h6Jo2Z1Oafz39NtV8E/iwcnjfef21Xv8iYi8C4+c4rn2YuP6zqOibdvx9uDDX+628/a7x/zJdR91/XP9+0dgdzXr+DU+lgXelvmwTnb/PXNV6Hw6t/vnHPk2u5c5WT4Pz9/vp5sNP6/e3+upt7UpvrC5ZnwapPh8PB+Ozzf0/hJKWfVqc4xbkJPz/Fk5azYPx9/vqT0Z+twN/0zPVp1zhvwvPGfdH+Sdd/2jnPg590jS/a5r+mv+6fd1q7YM7qc3OcB3Ne/3nX+aLj3Tq/7DK4ruB58Hqu35XB/rPOJ42Z1Bacww/jrwfhdP5F+59lzotcd9K809rOuwf/uCBs8NzBXrR9Gpyb58sqp11nWru77nn9Dk6lg3Wlv20SnL8tWH+WOfxjgvMFz8+Dndbvb/fX3fyT2lxfsDwP9rx+N98TOM837rezxKnzCYAbMrmcBOva/KUb7dp0PqmuNh2unFQP9gXn8SaY8MfB+cdPAPvs2g4+COPag6XgXNu0MQ4m2O8/P2sOBycYdzj4YJv6p7VNGuPmc+PcWFe6/uC5g3f9k85dn7tuEGbSnG6Mv/SPd3O4sa7PX7qxQZhJ7W6+SaWDd31uvmC763ftk+AcTLDPf+6vO3j/nOr3wwTPg2PcWFe6sa507f7S9U0q1eb++cf4626c2lzdP8a1uTHu3JWu3V+6Pn8ZrOvctfnHqu7aXen6p527dpWu7p/HXw/C+Ptc3cG4uYKl4HT4292Ycc/4r+v3t6nuYF2/K12fg/e3B/uCMH5Yfz0I586DpcZMGic41+4vXd3N4z9X3f/PwTxt6eZ0pRt/3nkQzg+vevBc8K7Nla7ND+/q/tIP5+oqdTg4V39SntrQATjNNKOu8aFBFz3Ogw32+8/9dV3PnbvS3+bW4+8Ltk3qczCuPA/G3++vu/GTSj+cv+6Hde2u9PcF65Ng/G3+uhvrb3N1VwrGX580xrW50sG7MtjuzlVeBMbBO1hXThrvYCeV/nFnjfXDnVd3/dPK4DocnL/dtbnyrLVN6jtrnL/PXTPYdt65G+e/dnDMWTCTYCe1uTn8fZPq/rZnXZN/nLvutDZ/+7Rruzlcvyv9Yy9aD8K5uf3tbn5XOpinPXfjXOnGu9J/zWB90rm/bdocgtHh7x+3fP7vNBjX7spJ8/n7/DNPa/fDTKu7sa50cOedB+HOgnd9wdLNodL1+duC7Q7GlQ729Py3Ve7jpO4OZPoFnkCEtRADIQZCDIQYCDEQYuB5wYDbnMWLWhOld9T+eVlguI4QAyEGQgyEGAgxEGJgKgbkN+dJ6GP6feoUx4l3fkrUp44OO0IMhBgIMRBiIMRAiIHnAgMBuj12ivNWFhLz5+IBhYsIMRBiIMRAiIEQA8+AgdM4dEYGKP0zzBUOCTEQYiDEQIiBEAMhBr5ODIh2nzq1I6F7Z2r5OpcQXivEQIiBEAMhBkIMhBj4whh4QrvHYWufhaw96fjC1wgnCDEQYiDEQIiBEAMhBr5iDDih3Ns+FTd379wRc1eel3bOrVHwflj/ub/u4F151nX84/x1N/ZZymedJ7hON4+/3bU9y7ouOsZ/DX/9acdfdN3uGq6cdp1J/ZPapo3/stt1bR3+d3Lc8uTvF1nftLHT2p9c9fzatDkmtfvb/HV3lUltru8i5bTx/nZ/fdKcwX6d6/Bcc09Lr8H3JzjG1/VZ9SIwnwE/QyU4v3/dZ003aZz/PQz2u7mmtV+0Pwg3ab5JbW7cWeVFx02DU7sOPx7GLZP/TptH0K7vaeecfKUvr9W/Lnefk9r8V3T9wTaduzn8ff66//6p6/S0aSyhRxyAKzXYX/dPNqkehPWf++sXGetg/OP8ddf/LOUXmcc/dlLd3/Ysa7vIGP81/PWLjBWMf4yru3LSHK7PlZNggvM6mPPGOLivqjzv+uf1n7WuaWOntZ81V7Bv2hyT2v1t/rqbc1Kb67tIOW28v91fnzTnpH7X5srguGntfriLwPjhn7Y+af5JbcF5gzDnnbvxQTjX7srz+oNwk+AntblxZ5UXHXcW3Fl9wWufBevv89eDc3zd524trtT1Xd2VwTU9bfu08ZpnPFfcvDh0AZ5O/pn6PTg4PA8xEGIgxECIgRADIQaeGwxImPfxBeM4dF9g+nOz0HAhIQZCDIQYCDEQYiDEwHQMeMScP8MxVR+r3D8j8T5SP32KsCfEQIiBEAMhBkIMhBh4XjBwmlFmHIeuRYWq9ufl0YTrCDEQYiDEQIiBEAMXw4Bo99DlcpcR/TNiHkroF8NgCBViIMRAiIEQAyEGngcMPKHbYxu6tybX6Eo1nuc+LxgH72D95/56ENb1qd1v2Xd1/3yuzcH651Jdh4Nx5bS2ae3ueurX4V+fzl1/sF19Otx1Hdy49bfncX2aw9UdnEr/3MF+16d2//hJddcWHOO/VnAe1+fGuHOVQVg3v/qC8EFYB+Pade4Of5ur+0sH50p3LcHoOGsd6g/CufGuz433l/4+V1cZhAn2uXP/NVybSh3BOfzrG0N8Htf+cf568Drqc7hT3R3uGu5cpX+sG+Pg/Gt0fW6sO3elv93VXemu4WBdqX5/3cH729U/7Zg0r2Bduxs3aQ4H4+/zt6keXNu080lz6NrB9uB4//rOup4b50r/3P41q92du7nPKt18Kt3hxgfbgrBuvcFx7twP7+b097m6K4Mwrt2tw98/aW4Hp3FBWDfXpD7B+uebBOMf7+r+ca7NzeM/V30arINz63X34M5dv39eVw/CnrZr6KlQfurlTos3X3DS4Lm72KQyCOs/99c19qxz1+fKILy/3b8O1+5K/zh/27T2IIx/bv+YYLs7d+Nd6dr9pb/PX/fDuPq0ftfuSsFPqk9qc3P7x/jh/P3+uoNxpX+8H87f7of1t/vh/TCuHiz98K7uYKbNexE4N0ewDM7p+oPtFzk/D8Y/t2B1uDZXjluftPthXJ8rg2POgg2O8Y91dVeeBXveNdwcrjwL3sG40l13UulgXBmEmdY+7foO3pVuvmnnwfbz4F2/K914V05r9/f764IPnrs5zirdGFf6YYNt7tyVgvXX/WP9fZNgJrUFx7vzSbCuzZX+67lxrvTDuDZXur5g6fpVuj5/m6sH+846P6tv2nyT2t08rgzCPGkPN2dxuAnLEAMhBkIMhBgIMfACY8BTuY/gSMY0nr9PiP0LfFvh0kMMhBgIMRBiIMTANxwDntZddHtMuL2wtZFOQse4b/iTD28vxECIgRADIQa+URgICOCeyt2Z2kPx/Bv1qMObCTEQYiDEQIiBbzwGRNWdhD5yYWsqv/F3Ht5giIEQAyEGQgyEGPjmYMDTsHM7f232xCnuM5X7N+c+wzsJMRBiIMRAiIEQA998DDgJ3btTJ5q78pt/++EdhhgIMRBiIMRAiIEXHgM+YZzUrxBx0fGQlr/wzzW8gScY0OvsfEPG5eiz8+FntSfwYS3EQIiBEAMvLAZOibpvc5aQor+wD/P3fOHuzRXh1r/Y6T+hRRmOB96/iA2jUfog7OQ9jkY450fgxgo2PEIMhBgIMfDiYeDJVwyCrk+eGvTPyTQv3i2FK/79wkCE91UOII6Iqz7grE9Z1yvt3mXvlR5amp58vUJfxAb5BRv2upaMxy0OUR+Dh+++sBYeIQZCDLxgGPDoub5iMRtL6I6eh/LKC/Ykv/nLfUKwR7yuEGPeUanMe9x6z3uRTwnxSOXQ4tGh3UyYzVjXcsOGRQYdS49aFunVLZ9i9Chu90YxazSP7KCwYYfRhGVHA6T1ISQ/4tiAbz5iwzsMMRBi4BuCAT6E3rfQRNAdNVepj+JpzzfkVsPbeHEw8IR4j8MvRLAHNKIg94itJ0rHJIuPLM+/9fjICpEe0nfXFjMxy0R71m8cWSoBwW/VLAZxH0YGNuj1rTcYWTeasvrJsS1lWza7smI/e","PeriodicalId":22413,"journal":{"name":"The EGU General Assembly","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced remote sensing techniques for monitoring anthropogenic landscapes\",\"authors\":\"P. Tarolli\",\"doi\":\"10.5194/EGUSPHERE-EGU21-3574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the last decade, a range of new remote-sensing techniques has led to a dramatic increase in terrain information, providing new opportunities to understand better Earth surface processes based on geomorphic signatures. Light detection and ranging (LiDAR) technology and, more recently, Structure from Motion (SfM) photogrammetry have the capability to produce sub-meter resolution digital elevation models (DEM) over large areas. LiDAR high-resolution topographic surveying is traditionally associated with high capital and logistical costs. Remotely Piloted Aircraft Systems (RPAS) on the other hand, offer a remote sensing tool capable of acquiring high-resolution spatial data at an unprecedented spatial and temporal resolution at an affordable cost, thus making multi-temporal surveys more flexible and easy to conduct. The scientific community is now providing a significantly increased amount of analyses on the Earth&#8217;s surface using RPAS in different environmental contexts and purpose. The goal of this talk is to provide a few useful examples of surveys through airborne LiDAR and RPAS monitoring of anthropogenic landscapes with a specific focus on mining (e.g., open-pit) and agriculture (e.g., terraces). In details, multi-temporal surveys and geomorphometric indexes (including novel landscape metrics) have been carried out and tested in key study areas in order to (i) map the extension of the investigated features, (ii) track any anthropogenic change through time, (iii) analyze the effects of the change related to changes in erosion.&#160;The proposed analysis can provide a basis for a large-scale and low-cost topographic survey for sustainable environmental planning and, for example, for the mitigation of anthropogenic environmental impacts.</p><p><strong>References</strong></p><ul><li>Chen J, Li K, Chang K-J, Sofia G,&#160;Tarolli P<strong>&#160;</strong>(2015).&#160;<span>Open-pit mining geomorphic feature characterization. <em>International Journal of Applied Earth Observation and Geoinformation</em>, 42, 76-86, doi:10.1016/j.jag.2015.05.001.</span></li>\\n<li>Cucchiaro S, Fallu DJ, Zhang H, Walsh K, Van Oost K, Brown AG, Tarolli P&#160;(2020). Multiplatform-SfM and TLS Data Fusion for Monitoring Agricultural Terraces in Complex Topographic and Landcover Conditions. <em>Remote Sensing</em>, 12, 1946, doi:10.3390/rs12121946.</li>\\n</ul><div><span><img src=\\\"data:image/png;base64, iVBORw0KGgoAAAANSUhEUgAAAfQAAAETCAYAAADAl/SwAAAABGdBTUEAALGPC/xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAAhGVYSWZNTQAqAAAACAAFARIAAwAAAAEAAQAAARoABQAAAAEAAABKARsABQAAAAEAAABSASgAAwAAAAEAAgAAh2kABAAAAAEAAABaAAAAAAAAAJYAAAABAAAAlgAAAAEAA6ABAAMAAAABAAEAAKACAAQAAAABAAAB9KADAAQAAAABAAABEwAAAACfzKOlAAAACXBIWXMAABcSAAAXEgFnn9JSAAACaWlUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAAPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1QIENvcmUgNi4wLjAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAgICAgICAgICB4bWxuczp0aWZmPSJodHRwOi8vbnMuYWRvYmUuY29tL3RpZmYvMS4wLyIKICAgICAgICAgICAgeG1sbnM6ZXhpZj0iaHR0cDovL25zLmFkb2JlLmNvbS9leGlmLzEuMC8iPgogICAgICAgICA8dGlmZjpPcmllbnRhdGlvbj4xPC90aWZmOk9yaWVudGF0aW9uPgogICAgICAgICA8dGlmZjpSZXNvbHV0aW9uVW5pdD4yPC90aWZmOlJlc29sdXRpb25Vbml0PgogICAgICAgICA8ZXhpZjpQaXhlbFlEaW1lbnNpb24+NzkxPC9leGlmOlBpeGVsWURpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6UGl4ZWxYRGltZW5zaW9uPjE0Mzc8L2V4aWY6UGl4ZWxYRGltZW5zaW9uPgogICAgICAgICA8ZXhpZjpDb2xvclNwYWNlPjE8L2V4aWY6Q29sb3JTcGFjZT4KICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CiAgIDwvcmRmOlJERj4KPC94OnhtcG1ldGE+Ctk9fnoAAEAASURBVHgB7L3ZjyVZnuf1u/u++L5FeHhsmRm5VnVtXTXVTQ/MDDO0QEjASz/wwAMjHhAg8a+0eEE8IRASQgh1ixGj6emmi6rqqu6qzMo9IzJWD9+Xe/3uO5+vXT8ZVpb3untELhWRZZYZfo6d8zvHjv3Mrv3234lk/uX/8D/byP6TiNmhmSWMk/AIMRBiIMRAiIEQAyEGnmcMQLVtNDSLZCg/aq7u/TgeGY7mI+l8etSur1k0JoDTOxDwRQ7B+2GD55pjUttZ7epzx7Sxrl/l08JcBH7a/G6sKy96fT+cf6z/Oq6ufh3n4VUwZ83l+lzph/e3qX3acRE4wehw6z1vTLA/eD6e7fy/k8apTYfWMq3frdMD9MFNgncwrrwIjIN15UXHTIOb1D6pzV3vvDI4dtq5a1epI4hTf38Qp4J3/arr8J/76+Pe8d9p7cHxFzn3z/tV1INrdecq3eHHi+t3fe7cla79WUt3Xf81Nde0dtcXhPdfP7g2d+7mFOxZ4y9yDXc9N7f/XHU3f7DfwX1Z5Red3z/e1YOlf63BvuD5JFjXdgoLPY/EUzbqtZdsayUSp7tnw76gujYcJM589m4uf+nW4NqC567dlf5+f931q5zW7od5lvqzzusfp7o73Hvmzs8q/XOcBTetzz/eX58GP639rLGuT6U7LnqPbqzG+etunmB5EZjgmIucu7Vr3e4arjxv/EXgLgJz3nXU/6zzuHGunHat8/qfZg3+ufz1add27WfBBvuC526OL7v8uq6jdQevNenc3d9Zv7PgODcmWJ4F96x9/mucNYcfzl/XGB1n3d8Y4vy/z3L982f9aiDcWl2pq/jr087VfhFcfTbXaDga9mMM6dnqSyMR9NPhI5URd6Z5L3QELx48D07i7/fX/XDT2v0wz1J/1nn94/z1p1nDs45z1/CP99dd/0XLs8a6PldedE7B+cf469PmuAjMtLFntfvndXVXnjVOfReBuwjMede56LUmzeOu78pJMBed/7w53Nx+OH/d9U8rz4IN9gXPp835Rdu/rutoncFrnXc+7d6C454F7qw5zurzX+uicF90jH+8v/4s1/eP/zrrbq2u1LX99Yucn7XeJ3N5tZF59NviNoTUi9rrn3d8VnENYRliIMRAiIEQAyEGQgw8VxgQLRf91r/xwuIWxab+2xT9uVpyuJgQAyEGQgyEGAgxEGIgiAG/8D2uI6ELyNchav9EnA/O8PlzDfXD+8/99c+PHF/WP3YSjL8tOF/w3A8brD8NrMZOg3ftKnWcMkm/VY57nu2vmz84elp7EO6880nrDo7xX8tfD8JNOz9rjLu+xj7Nsxd8cN7guYNR+bRzu7HnjXPrPw9O8511BNcePD9rrPr88P66GzepzfW58llg3BiVOi6CBzdG8K7uSrXpcOeuHLdO/nsRmEkjn3XcpLkmtZ03/7T+YLs7D5bumq7dnbtyWrv6/X3+erDPzeXKIKxrv2ip8TomvSdubn85DVbtF4UT7Fd5+Nfhvy/Xrmu7erD0r8v1ubbguWtXGez7rXOdjA/Z0MfAIuTu8FVd05llEN5/7q9PmuS8/uCYIHzwPAjvP38aWI2bBu9vd/Vg6b/u09bdXMFx09qDcBc5d3O5MjjG3+6vB+GmnV9kzEVggvMHxwTPHfy0dtc/rbzouIvCTbuO2oNzBM/PGhscP2nspLbgnM8C4x/jrwfn9p/74VzdlQ7OnbvStU8qLwLzZY6bNNektvPWNa0/2O7Og6W7pmt3566c1q5+f5+/Huxzc7kyCOvan6acNodrd6Xm9NeD1/D3+etBuK/63F3ble56/nNXD5YOVqXrc23Bc9c+FZYBGnNKvyHo3pla/EPDeoiBEAMhBkIMhBgIMfDcY+AJ7Y6H9Py5f1rhAkMMhBgIMRBiIMTABAxAzD2nuDFRH6vcP6PqE+DDphADIQZCDIQYCDEQYuC5x4BP5e7W+kR8dy1hGWIgxECIgRADIQZCDDyPGBDN9rzbiUPXoXO/U5zXGP4JMRBiIMRAiIEQAyEGnmsM+GRwCPoQeq7/FFng63mu7yBcXIiBEAMhBkIMhBj4/caAo9sj5+Xu7dXi4WRM1H+/0RPefYiBEAMhBkIMhBh4cTDwRAz/G6dyp+mz1s8qL84dhSsNMRBiIMRAiIEQA7+PGJB0rhTuHKdOcaqGhFxYCI8QAyEGQgyEGAgx8OJgANod1Wr/HZ+E7gh6SNdfnOcYrjTEQIiBEAMhBn5/MaDUs6LZnoQulbuM6GoJCfnv70sR3nmIgRADIQZCDLx4GPCc4Z4Q73HYmncbTxpfvLsKVxxiIMRAiIEQAyEGfl8xMKbfp6lfOfmMnqvi30JmEoKmwbhJ3Piz4BzMpPmfpm3aNc6aI7jOSbDnzXte/xed8yJrnHSNL9IWvOa0e5zWrmuf1efWdhaM+nSc9X6cBXNW33jmJy/7WddwsF9m6b/v89bp7/ePu+h6Jo2Z1Oafz39NtV8E/iwcnjfef21Xv8iYi8C4+c4rn2YuP6zqOibdvx9uDDX+628/a7x/zJdR91/XP9+0dgdzXr+DU+lgXelvmwTnb/PXNV6Hw6t/vnHPk2u5c5WT4Pz9/vp5sNP6/e3+upt7UpvrC5ZnwapPh8PB+Ozzf0/hJKWfVqc4xbkJPz/Fk5azYPx9/vqT0Z+twN/0zPVp1zhvwvPGfdH+Sdd/2jnPg590jS/a5r+mv+6fd1q7YM7qc3OcB3Ne/3nX+aLj3Tq/7DK4ruB58Hqu35XB/rPOJ42Z1Bacww/jrwfhdP5F+59lzotcd9K809rOuwf/uCBs8NzBXrR9Gpyb58sqp11nWru77nn9Dk6lg3Wlv20SnL8tWH+WOfxjgvMFz8+Dndbvb/fX3fyT2lxfsDwP9rx+N98TOM837rezxKnzCYAbMrmcBOva/KUb7dp0PqmuNh2unFQP9gXn8SaY8MfB+cdPAPvs2g4+COPag6XgXNu0MQ4m2O8/P2sOBycYdzj4YJv6p7VNGuPmc+PcWFe6/uC5g3f9k85dn7tuEGbSnG6Mv/SPd3O4sa7PX7qxQZhJ7W6+SaWDd31uvmC763ftk+AcTLDPf+6vO3j/nOr3wwTPg2PcWFe6sa507f7S9U0q1eb++cf4626c2lzdP8a1uTHu3JWu3V+6Pn8ZrOvctfnHqu7aXen6p527dpWu7p/HXw/C+Ptc3cG4uYKl4HT4292Ycc/4r+v3t6nuYF2/K12fg/e3B/uCMH5Yfz0I586DpcZMGic41+4vXd3N4z9X3f/PwTxt6eZ0pRt/3nkQzg+vevBc8K7Nla7ND+/q/tIP5+oqdTg4V39SntrQATjNNKOu8aFBFz3Ogw32+8/9dV3PnbvS3+bW4+8Ltk3qczCuPA/G3++vu/GTSj+cv+6Hde2u9PcF65Ng/G3+uhvrb3N1VwrGX580xrW50sG7MtjuzlVeBMbBO1hXThrvYCeV/nFnjfXDnVd3/dPK4DocnL/dtbnyrLVN6jtrnL/PXTPYdt65G+e/dnDMWTCTYCe1uTn8fZPq/rZnXZN/nLvutDZ/+7Rruzlcvyv9Yy9aD8K5uf3tbn5XOpinPXfjXOnGu9J/zWB90rm/bdocgtHh7x+3fP7vNBjX7spJ8/n7/DNPa/fDTKu7sa50cOedB+HOgnd9wdLNodL1+duC7Q7GlQ729Py3Ve7jpO4OZPoFnkCEtRADIQZCDIQYCDEQYuB5wYDbnMWLWhOld9T+eVlguI4QAyEGQgyEGAgxEGJgKgbkN+dJ6GP6feoUx4l3fkrUp44OO0IMhBgIMRBiIMRAiIHnAgMBuj12ivNWFhLz5+IBhYsIMRBiIMRAiIEQA8+AgdM4dEYGKP0zzBUOCTEQYiDEQIiBEAMhBr5ODIh2nzq1I6F7Z2r5OpcQXivEQIiBEAMhBkIMhBj4whh4QrvHYWufhaw96fjC1wgnCDEQYiDEQIiBEAMhBr5iDDih3Ns+FTd379wRc1eel3bOrVHwflj/ub/u4F151nX84/x1N/ZZymedJ7hON4+/3bU9y7ouOsZ/DX/9acdfdN3uGq6cdp1J/ZPapo3/stt1bR3+d3Lc8uTvF1nftLHT2p9c9fzatDkmtfvb/HV3lUltru8i5bTx/nZ/fdKcwX6d6/Bcc09Lr8H3JzjG1/VZ9SIwnwE/QyU4v3/dZ003aZz/PQz2u7mmtV+0Pwg3ab5JbW7cWeVFx02DU7sOPx7GLZP/TptH0K7vaeecfKUvr9W/Lnefk9r8V3T9wTaduzn8ff66//6p6/S0aSyhRxyAKzXYX/dPNqkehPWf++sXGetg/OP8ddf/LOUXmcc/dlLd3/Ysa7vIGP81/PWLjBWMf4yru3LSHK7PlZNggvM6mPPGOLivqjzv+uf1n7WuaWOntZ81V7Bv2hyT2v1t/rqbc1Kb67tIOW28v91fnzTnpH7X5srguGntfriLwPjhn7Y+af5JbcF5gzDnnbvxQTjX7srz+oNwk+AntblxZ5UXHXcW3Fl9wWufBevv89eDc3zd524trtT1Xd2VwTU9bfu08ZpnPFfcvDh0AZ5O/pn6PTg4PA8xEGIgxECIgRADIQaeGwxImPfxBeM4dF9g+nOz0HAhIQZCDIQYCDEQYiDEwHQMeMScP8MxVR+r3D8j8T5SP32KsCfEQIiBEAMhBkIMhBh4XjBwmlFmHIeuRYWq9ufl0YTrCDEQYiDEQIiBEAMXw4Bo99DlcpcR/TNiHkroF8NgCBViIMRAiIEQAyEGngcMPKHbYxu6tybX6Eo1nuc+LxgH72D95/56ENb1qd1v2Xd1/3yuzcH651Jdh4Nx5bS2ae3ueurX4V+fzl1/sF19Otx1Hdy49bfncX2aw9UdnEr/3MF+16d2//hJddcWHOO/VnAe1+fGuHOVQVg3v/qC8EFYB+Pade4Of5ur+0sH50p3LcHoOGsd6g/CufGuz433l/4+V1cZhAn2uXP/NVybSh3BOfzrG0N8Htf+cf568Drqc7hT3R3uGu5cpX+sG+Pg/Gt0fW6sO3elv93VXemu4WBdqX5/3cH729U/7Zg0r2Bduxs3aQ4H4+/zt6keXNu080lz6NrB9uB4//rOup4b50r/3P41q92du7nPKt18Kt3hxgfbgrBuvcFx7twP7+b097m6K4Mwrt2tw98/aW4Hp3FBWDfXpD7B+uebBOMf7+r+ca7NzeM/V30arINz63X34M5dv39eVw/CnrZr6KlQfurlTos3X3DS4Lm72KQyCOs/99c19qxz1+fKILy/3b8O1+5K/zh/27T2IIx/bv+YYLs7d+Nd6dr9pb/PX/fDuPq0ftfuSsFPqk9qc3P7x/jh/P3+uoNxpX+8H87f7of1t/vh/TCuHiz98K7uYKbNexE4N0ewDM7p+oPtFzk/D8Y/t2B1uDZXjluftPthXJ8rg2POgg2O8Y91dVeeBXveNdwcrjwL3sG40l13UulgXBmEmdY+7foO3pVuvmnnwfbz4F2/K914V05r9/f764IPnrs5zirdGFf6YYNt7tyVgvXX/WP9fZNgJrUFx7vzSbCuzZX+67lxrvTDuDZXur5g6fpVuj5/m6sH+846P6tv2nyT2t08rgzCPGkPN2dxuAnLEAMhBkIMhBgIMfACY8BTuY/gSMY0nr9PiP0LfFvh0kMMhBgIMRBiIMTANxwDntZddHtMuL2wtZFOQse4b/iTD28vxECIgRADIQa+URgICOCeyt2Z2kPx/Bv1qMObCTEQYiDEQIiBbzwGRNWdhD5yYWsqv/F3Ht5giIEQAyEGQgyEGPjmYMDTsHM7f232xCnuM5X7N+c+wzsJMRBiIMRAiIEQA998DDgJ3btTJ5q78pt/++EdhhgIMRBiIMRAiIEXHgM+YZzUrxBx0fGQlr/wzzW8gScY0OvsfEPG5eiz8+FntSfwYS3EQIiBEAMvLAZOibpvc5aQor+wD/P3fOHuzRXh1r/Y6T+hRRmOB96/iA2jUfog7OQ9jkY450fgxgo2PEIMhBgIMfDiYeDJVwyCrk+eGvTPyTQv3i2FK/79wkCE91UOII6Iqz7grE9Z1yvt3mXvlR5amp58vUJfxAb5BRv2upaMxy0OUR+Dh+++sBYeIQZCDLxgGPDoub5iMRtL6I6eh/LKC/Ykv/nLfUKwR7yuEGPeUanMe9x6z3uRTwnxSOXQ4tGh3UyYzVjXcsOGRQYdS49aFunVLZ9i9Chu90YxazSP7KCwYYfRhGVHA6T1ISQ/4tiAbz5iwzsMMRBi4BuCAT6E3rfQRNAdNVepj+JpzzfkVsPbeHEw8IR4j8MvRLAHNKIg94itJ0rHJIuPLM+/9fjICpEe0nfXFjMxy0R71m8cWSoBwW/VLAZxH0YGNuj1rTcYWTeasvrJsS1lWza7smI/e\",\"PeriodicalId\":22413,\"journal\":{\"name\":\"The EGU General Assembly\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The EGU General Assembly\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/EGUSPHERE-EGU21-3574\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The EGU General Assembly","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/EGUSPHERE-EGU21-3574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去十年中,一系列新的遥感技术导致了地形信息的急剧增加,为更好地了解基于地貌特征的地球表面过程提供了新的机会。光探测和测距(LiDAR)技术以及最近的运动结构(SfM)摄影测量技术能够在大面积上产生亚米分辨率的数字高程模型(DEM)。传统上,激光雷达高分辨率地形测量伴随着高昂的资金和物流成本。另一方面,遥控飞机系统(RPAS)提供了一种遥感工具,能够以可承受的成本以前所未有的空间和时间分辨率获取高分辨率空间数据,从而使多时相调查更加灵活和易于进行。在不同的环境背景和目的下,科学界正在使用RPAS对地球表面进行大量的分析。本次演讲的目的是提供一些有用的调查实例,通过机载激光雷达和RPAS监测人为景观,特别关注采矿(如露天矿)和农业(如梯田)。具体而言,在主要研究区域进行了多时段调查和地貌学指数(包括新的景观指标)并进行了测试,以便(i)绘制调查特征的扩展图,(ii)追踪任何随时间变化的人为变化,(iii)分析与侵蚀变化相关的变化的影响。&#160;建议的分析可以为可持续环境规划的大规模和低成本地形调查提供基础,例如:减轻人为环境影响。[参考文献]陈杰,李凯,张坤军,Sofia G,&#160;Tarolli P&#160;(2015).&#160;应用地球观测与地理信息学报,42,76-86,doi:10.1016/j.j j. 2015.05.001。张海峰,张海峰,李建军,李建军,李建军,李建军,李建军,李建军,李建军(2020)。复杂地形和土地覆盖条件下农业梯田监测的多平台sfm和TLS数据融合。遥感,1946,12,doi:10.3390/rs12121946。< img src = "数据:图像/ png; base64,
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advanced remote sensing techniques for monitoring anthropogenic landscapes

In the last decade, a range of new remote-sensing techniques has led to a dramatic increase in terrain information, providing new opportunities to understand better Earth surface processes based on geomorphic signatures. Light detection and ranging (LiDAR) technology and, more recently, Structure from Motion (SfM) photogrammetry have the capability to produce sub-meter resolution digital elevation models (DEM) over large areas. LiDAR high-resolution topographic surveying is traditionally associated with high capital and logistical costs. Remotely Piloted Aircraft Systems (RPAS) on the other hand, offer a remote sensing tool capable of acquiring high-resolution spatial data at an unprecedented spatial and temporal resolution at an affordable cost, thus making multi-temporal surveys more flexible and easy to conduct. The scientific community is now providing a significantly increased amount of analyses on the Earth’s surface using RPAS in different environmental contexts and purpose. The goal of this talk is to provide a few useful examples of surveys through airborne LiDAR and RPAS monitoring of anthropogenic landscapes with a specific focus on mining (e.g., open-pit) and agriculture (e.g., terraces). In details, multi-temporal surveys and geomorphometric indexes (including novel landscape metrics) have been carried out and tested in key study areas in order to (i) map the extension of the investigated features, (ii) track any anthropogenic change through time, (iii) analyze the effects of the change related to changes in erosion. The proposed analysis can provide a basis for a large-scale and low-cost topographic survey for sustainable environmental planning and, for example, for the mitigation of anthropogenic environmental impacts.

References

  • Chen J, Li K, Chang K-J, Sofia G, Tarolli P (2015). Open-pit mining geomorphic feature characterization. International Journal of Applied Earth Observation and Geoinformation, 42, 76-86, doi:10.1016/j.jag.2015.05.001.
  • Cucchiaro S, Fallu DJ, Zhang H, Walsh K, Van Oost K, Brown AG, Tarolli P (2020). Multiplatform-SfM and TLS Data Fusion for Monitoring Agricultural Terraces in Complex Topographic and Landcover Conditions. Remote Sensing, 12, 1946, doi:10.3390/rs12121946.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信