注意语音的无监督分词

Pierre Godard, Marcely Zanon Boito, Lucas Ondel, Alexandre Berard, François Yvon, Aline Villavicencio, L. Besacier
{"title":"注意语音的无监督分词","authors":"Pierre Godard, Marcely Zanon Boito, Lucas Ondel, Alexandre Berard, François Yvon, Aline Villavicencio, L. Besacier","doi":"10.21437/Interspeech.2018-1308","DOIUrl":null,"url":null,"abstract":"We present a first attempt to perform attentional word segmen-tation directly from the speech signal, with the final goal to automatically identify lexical units in a low-resource, unwritten language (UL). Our methodology assumes a pairing between recordings in the UL with translations in a well-resourced language. It uses Acoustic Unit Discovery (AUD) to convert speech into a sequence of pseudo-phones that is segmented using neural soft-alignments produced by a neural machine translation model. Evaluation uses an actual Bantu UL, Mboshi; comparisons to monolingual and bilingual baselines illustrate the potential of attentional word segmentation for language documentation.","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Unsupervised Word Segmentation from Speech with Attention\",\"authors\":\"Pierre Godard, Marcely Zanon Boito, Lucas Ondel, Alexandre Berard, François Yvon, Aline Villavicencio, L. Besacier\",\"doi\":\"10.21437/Interspeech.2018-1308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a first attempt to perform attentional word segmen-tation directly from the speech signal, with the final goal to automatically identify lexical units in a low-resource, unwritten language (UL). Our methodology assumes a pairing between recordings in the UL with translations in a well-resourced language. It uses Acoustic Unit Discovery (AUD) to convert speech into a sequence of pseudo-phones that is segmented using neural soft-alignments produced by a neural machine translation model. Evaluation uses an actual Bantu UL, Mboshi; comparisons to monolingual and bilingual baselines illustrate the potential of attentional word segmentation for language documentation.\",\"PeriodicalId\":93888,\"journal\":{\"name\":\"ArXiv\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21437/Interspeech.2018-1308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/Interspeech.2018-1308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

我们提出了直接从语音信号中执行注意分词的第一次尝试,其最终目标是自动识别低资源的非书面语言(UL)中的词汇单位。我们的方法假设UL中的录音与资源丰富的语言的翻译之间是配对的。它使用声学单元发现(AUD)将语音转换成一系列伪电话,这些伪电话使用神经机器翻译模型产生的神经软对齐进行分割。评估使用实际班图UL, Mboshi;与单语和双语基线的比较说明了语言文档中注意分词的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised Word Segmentation from Speech with Attention
We present a first attempt to perform attentional word segmen-tation directly from the speech signal, with the final goal to automatically identify lexical units in a low-resource, unwritten language (UL). Our methodology assumes a pairing between recordings in the UL with translations in a well-resourced language. It uses Acoustic Unit Discovery (AUD) to convert speech into a sequence of pseudo-phones that is segmented using neural soft-alignments produced by a neural machine translation model. Evaluation uses an actual Bantu UL, Mboshi; comparisons to monolingual and bilingual baselines illustrate the potential of attentional word segmentation for language documentation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信