亲$p$群体与很少的关系和普遍的Koszulity

C. Quadrelli
{"title":"亲$p$群体与很少的关系和普遍的Koszulity","authors":"C. Quadrelli","doi":"10.7146/MATH.SCAND.A-123644","DOIUrl":null,"url":null,"abstract":"Let $p$ be a prime. We show that if a pro-$p$ group with at most 2 defining relations has quadratic $\\mathbb{F}_p$-cohomology, then such algebra is universally Koszul. This proves the \"Universal Koszulity Conjecture\" formulated by J. Minac et al. in the case of maximal pro-$p$ Galois groups of fields with at most 2 defining relations.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":"191 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Pro-$p$ groups with few relations and universal Koszulity\",\"authors\":\"C. Quadrelli\",\"doi\":\"10.7146/MATH.SCAND.A-123644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $p$ be a prime. We show that if a pro-$p$ group with at most 2 defining relations has quadratic $\\\\mathbb{F}_p$-cohomology, then such algebra is universally Koszul. This proves the \\\"Universal Koszulity Conjecture\\\" formulated by J. Minac et al. in the case of maximal pro-$p$ Galois groups of fields with at most 2 defining relations.\",\"PeriodicalId\":8427,\"journal\":{\"name\":\"arXiv: Group Theory\",\"volume\":\"191 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7146/MATH.SCAND.A-123644\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7146/MATH.SCAND.A-123644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

设p是素数。我们证明了如果一个最多有2个定义关系的亲$p$群具有二次$\mathbb{F}_p$-上同调,那么这样的代数是普遍的Koszul。这证明了J. Minac等人在具有最多2个定义关系的极大的pro-$p$ Galois群的情况下提出的“普世性Koszulity猜想”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pro-$p$ groups with few relations and universal Koszulity
Let $p$ be a prime. We show that if a pro-$p$ group with at most 2 defining relations has quadratic $\mathbb{F}_p$-cohomology, then such algebra is universally Koszul. This proves the "Universal Koszulity Conjecture" formulated by J. Minac et al. in the case of maximal pro-$p$ Galois groups of fields with at most 2 defining relations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信