{"title":"亲$p$群体与很少的关系和普遍的Koszulity","authors":"C. Quadrelli","doi":"10.7146/MATH.SCAND.A-123644","DOIUrl":null,"url":null,"abstract":"Let $p$ be a prime. We show that if a pro-$p$ group with at most 2 defining relations has quadratic $\\mathbb{F}_p$-cohomology, then such algebra is universally Koszul. This proves the \"Universal Koszulity Conjecture\" formulated by J. Minac et al. in the case of maximal pro-$p$ Galois groups of fields with at most 2 defining relations.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":"191 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Pro-$p$ groups with few relations and universal Koszulity\",\"authors\":\"C. Quadrelli\",\"doi\":\"10.7146/MATH.SCAND.A-123644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $p$ be a prime. We show that if a pro-$p$ group with at most 2 defining relations has quadratic $\\\\mathbb{F}_p$-cohomology, then such algebra is universally Koszul. This proves the \\\"Universal Koszulity Conjecture\\\" formulated by J. Minac et al. in the case of maximal pro-$p$ Galois groups of fields with at most 2 defining relations.\",\"PeriodicalId\":8427,\"journal\":{\"name\":\"arXiv: Group Theory\",\"volume\":\"191 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7146/MATH.SCAND.A-123644\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7146/MATH.SCAND.A-123644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pro-$p$ groups with few relations and universal Koszulity
Let $p$ be a prime. We show that if a pro-$p$ group with at most 2 defining relations has quadratic $\mathbb{F}_p$-cohomology, then such algebra is universally Koszul. This proves the "Universal Koszulity Conjecture" formulated by J. Minac et al. in the case of maximal pro-$p$ Galois groups of fields with at most 2 defining relations.