相互作用粒子系统的不变测度:代数方面

Pub Date : 2020-01-01 DOI:10.1051/ps/2020008
Luis Fredes, J. Marckert
{"title":"相互作用粒子系统的不变测度:代数方面","authors":"Luis Fredes, J. Marckert","doi":"10.1051/ps/2020008","DOIUrl":null,"url":null,"abstract":"Consider a continuous time particle system ηt = (ηt(k), k ∈ 𝕃), indexed by a lattice 𝕃 which will be either ℤ, ℤ∕nℤ, a segment {1, ⋯ , n}, or ℤd, and taking its values in the set Eκ𝕃 where Eκ = {0, ⋯ , κ − 1} for some fixed κ ∈{∞, 2, 3, ⋯ }. Assume that the Markovian evolution of the particle system (PS) is driven by some translation invariant local dynamics with bounded range, encoded by a jump rate matrix ⊤. These are standard settings, satisfied by the TASEP, the voter models, the contact processes. The aim of this paper is to provide some sufficient and/or necessary conditions on the matrix ⊤ so that this Markov process admits some simple invariant distribution, as a product measure (if 𝕃 is any of the spaces mentioned above), the law of a Markov process indexed by ℤ or [1, n] ∩ ℤ (if 𝕃 = ℤ or {1, …, n}), or a Gibbs measure if 𝕃 = ℤ/nℤ. Multiple applications follow: efficient ways to find invariant Markov laws for a given jump rate matrix or to prove that none exists. The voter models and the contact processes are shown not to possess any Markov laws as invariant distribution (for any memory m). (As usual, a random process X indexed by ℤ or ℕ is said to be a Markov chain with memory m ∈ {0, 1, 2, ⋯ } if ℙ(Xk ∈ A | Xk−i, i ≥ 1) = ℙ(Xk ∈ A | Xk−i, 1 ≤ i ≤ m), for any k.) We also prove that some models close to these models do. We exhibit PS admitting hidden Markov chains as invariant distribution and design many PS on ℤ2, with jump rates indexed by 2 × 2 squares, admitting product invariant measures.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Invariant measures of interacting particle systems: Algebraic aspects\",\"authors\":\"Luis Fredes, J. Marckert\",\"doi\":\"10.1051/ps/2020008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider a continuous time particle system ηt = (ηt(k), k ∈ 𝕃), indexed by a lattice 𝕃 which will be either ℤ, ℤ∕nℤ, a segment {1, ⋯ , n}, or ℤd, and taking its values in the set Eκ𝕃 where Eκ = {0, ⋯ , κ − 1} for some fixed κ ∈{∞, 2, 3, ⋯ }. Assume that the Markovian evolution of the particle system (PS) is driven by some translation invariant local dynamics with bounded range, encoded by a jump rate matrix ⊤. These are standard settings, satisfied by the TASEP, the voter models, the contact processes. The aim of this paper is to provide some sufficient and/or necessary conditions on the matrix ⊤ so that this Markov process admits some simple invariant distribution, as a product measure (if 𝕃 is any of the spaces mentioned above), the law of a Markov process indexed by ℤ or [1, n] ∩ ℤ (if 𝕃 = ℤ or {1, …, n}), or a Gibbs measure if 𝕃 = ℤ/nℤ. Multiple applications follow: efficient ways to find invariant Markov laws for a given jump rate matrix or to prove that none exists. The voter models and the contact processes are shown not to possess any Markov laws as invariant distribution (for any memory m). (As usual, a random process X indexed by ℤ or ℕ is said to be a Markov chain with memory m ∈ {0, 1, 2, ⋯ } if ℙ(Xk ∈ A | Xk−i, i ≥ 1) = ℙ(Xk ∈ A | Xk−i, 1 ≤ i ≤ m), for any k.) We also prove that some models close to these models do. We exhibit PS admitting hidden Markov chains as invariant distribution and design many PS on ℤ2, with jump rates indexed by 2 × 2 squares, admitting product invariant measures.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1051/ps/2020008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/ps/2020008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

考虑一个连续时间粒子系统ηt = (ηt(k), k∈),由一个晶格索引,它将是一个区间{1,⋯n},或者是一个区间{1,⋯n},或者是一个区间{1,⋯n},并且取它在集合ekk𝕃where中的值对于一些固定的κ∈{∞,2,3,⋯},ekk ={0,⋯k−1}。假设粒子系统(PS)的马尔可夫演化是由一些有界范围的平移不变局部动力学驱动的,用跳跃率矩阵来编码。这些都是标准设置,符合TASEP,选民模型,接触过程。本文的目的是提供矩阵上的一些充分和/或必要条件,使得这个马尔可夫过程允许一些简单不变分布,作为乘积测度(如果是上述任何一个空间),一个以0或[1,n]∩0(如果 = 0或{1,…,n})为索引的马尔可夫过程的定律,或一个吉布斯测度,如果 = 0 /n 0。以下是多种应用:为给定跳跃率矩阵找到不变马尔可夫定律或证明不存在马尔可夫定律的有效方法。选民模型和接触过程被证明不具有任何马尔可夫定律作为不变分布(对于任何存储器m)。(通常,一个随机过程X被称为一个马尔可夫链,其存储器m∈{0,1,2,⋯},如果对于任何k,∈a (Xk∈a | Xk−i, i≥1)=²(Xk∈a | Xk−i, 1≤i≤m)。)我们还证明了一些接近这些模型的模型可以。我们展示了承认隐马尔可夫链为不变量分布的PS,并设计了许多跳跃率以2 × 2平方为索引,承认乘积不变量的PS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Invariant measures of interacting particle systems: Algebraic aspects
Consider a continuous time particle system ηt = (ηt(k), k ∈ 𝕃), indexed by a lattice 𝕃 which will be either ℤ, ℤ∕nℤ, a segment {1, ⋯ , n}, or ℤd, and taking its values in the set Eκ𝕃 where Eκ = {0, ⋯ , κ − 1} for some fixed κ ∈{∞, 2, 3, ⋯ }. Assume that the Markovian evolution of the particle system (PS) is driven by some translation invariant local dynamics with bounded range, encoded by a jump rate matrix ⊤. These are standard settings, satisfied by the TASEP, the voter models, the contact processes. The aim of this paper is to provide some sufficient and/or necessary conditions on the matrix ⊤ so that this Markov process admits some simple invariant distribution, as a product measure (if 𝕃 is any of the spaces mentioned above), the law of a Markov process indexed by ℤ or [1, n] ∩ ℤ (if 𝕃 = ℤ or {1, …, n}), or a Gibbs measure if 𝕃 = ℤ/nℤ. Multiple applications follow: efficient ways to find invariant Markov laws for a given jump rate matrix or to prove that none exists. The voter models and the contact processes are shown not to possess any Markov laws as invariant distribution (for any memory m). (As usual, a random process X indexed by ℤ or ℕ is said to be a Markov chain with memory m ∈ {0, 1, 2, ⋯ } if ℙ(Xk ∈ A | Xk−i, i ≥ 1) = ℙ(Xk ∈ A | Xk−i, 1 ≤ i ≤ m), for any k.) We also prove that some models close to these models do. We exhibit PS admitting hidden Markov chains as invariant distribution and design many PS on ℤ2, with jump rates indexed by 2 × 2 squares, admitting product invariant measures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信