Aghil Alaee, Armando J. Cabrera Pacheco, Carla Cederbaum
{"title":"带电荷的渐近平面扩展","authors":"Aghil Alaee, Armando J. Cabrera Pacheco, Carla Cederbaum","doi":"10.4310/atmp.2019.v23.n8.a1","DOIUrl":null,"url":null,"abstract":"The Bartnik mass is a notion of quasi-local mass which is remarkably difficult to compute. Mantoulidis and Schoen [2016] developed a novel technique to construct asymptotically flat extensions of minimal Bartnik data in such a way that the ADM mass of these extensions is well-controlled, and thus, they were able to compute the Bartnik mass for minimal spheres satisfying a stability condition. In this work, we develop extensions and gluing tools, a la Mantoulidis and Schoen, for time-symmetric initial data sets for the Einstein-Maxwell equations that allow us to compute the value of an ad-hoc notion of charged Barnik mass for suitable charged minimal Bartnik data.","PeriodicalId":50848,"journal":{"name":"Advances in Theoretical and Mathematical Physics","volume":"23 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Asymptotically flat extensions with charge\",\"authors\":\"Aghil Alaee, Armando J. Cabrera Pacheco, Carla Cederbaum\",\"doi\":\"10.4310/atmp.2019.v23.n8.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Bartnik mass is a notion of quasi-local mass which is remarkably difficult to compute. Mantoulidis and Schoen [2016] developed a novel technique to construct asymptotically flat extensions of minimal Bartnik data in such a way that the ADM mass of these extensions is well-controlled, and thus, they were able to compute the Bartnik mass for minimal spheres satisfying a stability condition. In this work, we develop extensions and gluing tools, a la Mantoulidis and Schoen, for time-symmetric initial data sets for the Einstein-Maxwell equations that allow us to compute the value of an ad-hoc notion of charged Barnik mass for suitable charged minimal Bartnik data.\",\"PeriodicalId\":50848,\"journal\":{\"name\":\"Advances in Theoretical and Mathematical Physics\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.4310/atmp.2019.v23.n8.a1\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.4310/atmp.2019.v23.n8.a1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
The Bartnik mass is a notion of quasi-local mass which is remarkably difficult to compute. Mantoulidis and Schoen [2016] developed a novel technique to construct asymptotically flat extensions of minimal Bartnik data in such a way that the ADM mass of these extensions is well-controlled, and thus, they were able to compute the Bartnik mass for minimal spheres satisfying a stability condition. In this work, we develop extensions and gluing tools, a la Mantoulidis and Schoen, for time-symmetric initial data sets for the Einstein-Maxwell equations that allow us to compute the value of an ad-hoc notion of charged Barnik mass for suitable charged minimal Bartnik data.
期刊介绍:
Advances in Theoretical and Mathematical Physics is a bimonthly publication of the International Press, publishing papers on all areas in which theoretical physics and mathematics interact with each other.