具有指数索赔规模的Sparre Andersen风险模型破产时间密度的稳定性注意事项

Q4 Mathematics
E. Gordienko, J. R. Chávez, P. Vázquez-Ortega
{"title":"具有指数索赔规模的Sparre Andersen风险模型破产时间密度的稳定性注意事项","authors":"E. Gordienko, J. R. Chávez, P. Vázquez-Ortega","doi":"10.4064/am2412-9-2020","DOIUrl":null,"url":null,"abstract":". In this note, the Sparre Andersen risk process with exponential claim sizes is considered. We derive upper bounds for deviations of the ruin time density when approximating the inter-claim time distribution. In particular, we treat approximation by means of empirical densities. In actuarial theory the significance of ruin probability is well-known (see Additionally, in certain the ruin time distribution has to estimated. problem arises, for in the cases of sudden natural when the of claims","PeriodicalId":52313,"journal":{"name":"Applicationes Mathematicae","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Note on stability of the ruin time density in a Sparre Andersen risk model with exponential claim sizes\",\"authors\":\"E. Gordienko, J. R. Chávez, P. Vázquez-Ortega\",\"doi\":\"10.4064/am2412-9-2020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this note, the Sparre Andersen risk process with exponential claim sizes is considered. We derive upper bounds for deviations of the ruin time density when approximating the inter-claim time distribution. In particular, we treat approximation by means of empirical densities. In actuarial theory the significance of ruin probability is well-known (see Additionally, in certain the ruin time distribution has to estimated. problem arises, for in the cases of sudden natural when the of claims\",\"PeriodicalId\":52313,\"journal\":{\"name\":\"Applicationes Mathematicae\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applicationes Mathematicae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4064/am2412-9-2020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicationes Mathematicae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/am2412-9-2020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

. 在本说明中,考虑了具有指数索赔规模的Sparre Andersen风险过程。在近似索赔间时间分布时,我们推导出破产时间密度偏差的上界。特别地,我们用经验密度来处理近似。在精算理论中,破产概率的重要性是众所周知的(见)。此外,在某些情况下,必须估计破产时间分布。问题出现了,因为在突然发生的情况下自然会发生索赔
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Note on stability of the ruin time density in a Sparre Andersen risk model with exponential claim sizes
. In this note, the Sparre Andersen risk process with exponential claim sizes is considered. We derive upper bounds for deviations of the ruin time density when approximating the inter-claim time distribution. In particular, we treat approximation by means of empirical densities. In actuarial theory the significance of ruin probability is well-known (see Additionally, in certain the ruin time distribution has to estimated. problem arises, for in the cases of sudden natural when the of claims
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applicationes Mathematicae
Applicationes Mathematicae Mathematics-Applied Mathematics
CiteScore
0.30
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信