{"title":"球的保容同胚群上的随机拉格朗日流","authors":"Dejun Luo","doi":"10.1080/17442508.2014.995659","DOIUrl":null,"url":null,"abstract":"We consider stochastic differential equations on the group of volume-preserving homeomorphisms of the sphere . The diffusion part is given by the divergence-free eigenvector fields of the Laplacian acting on -vector fields, while the drift is some other divergence-free vector field. We show that the equation generates a unique flow of measure-preserving homeomorphisms when the drift has first-order Sobolev regularity, and derive a formula for the distance between two Lagrangian flows. We also compute the rotation process of two particles on the sphere when they are close to each other.","PeriodicalId":49269,"journal":{"name":"Stochastics-An International Journal of Probability and Stochastic Processes","volume":"24 1","pages":"680 - 701"},"PeriodicalIF":0.8000,"publicationDate":"2013-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Stochastic Lagrangian flows on the group of volume-preserving homeomorphisms of the spheres\",\"authors\":\"Dejun Luo\",\"doi\":\"10.1080/17442508.2014.995659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider stochastic differential equations on the group of volume-preserving homeomorphisms of the sphere . The diffusion part is given by the divergence-free eigenvector fields of the Laplacian acting on -vector fields, while the drift is some other divergence-free vector field. We show that the equation generates a unique flow of measure-preserving homeomorphisms when the drift has first-order Sobolev regularity, and derive a formula for the distance between two Lagrangian flows. We also compute the rotation process of two particles on the sphere when they are close to each other.\",\"PeriodicalId\":49269,\"journal\":{\"name\":\"Stochastics-An International Journal of Probability and Stochastic Processes\",\"volume\":\"24 1\",\"pages\":\"680 - 701\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2013-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastics-An International Journal of Probability and Stochastic Processes\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/17442508.2014.995659\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics-An International Journal of Probability and Stochastic Processes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17442508.2014.995659","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Stochastic Lagrangian flows on the group of volume-preserving homeomorphisms of the spheres
We consider stochastic differential equations on the group of volume-preserving homeomorphisms of the sphere . The diffusion part is given by the divergence-free eigenvector fields of the Laplacian acting on -vector fields, while the drift is some other divergence-free vector field. We show that the equation generates a unique flow of measure-preserving homeomorphisms when the drift has first-order Sobolev regularity, and derive a formula for the distance between two Lagrangian flows. We also compute the rotation process of two particles on the sphere when they are close to each other.
期刊介绍:
Stochastics: An International Journal of Probability and Stochastic Processes is a world-leading journal publishing research concerned with stochastic processes and their applications in the modelling, analysis and optimization of stochastic systems, i.e. processes characterized both by temporal or spatial evolution and by the presence of random effects.
Articles are published dealing with all aspects of stochastic systems analysis, characterization problems, stochastic modelling and identification, optimization, filtering and control and with related questions in the theory of stochastic processes. The journal also solicits papers dealing with significant applications of stochastic process theory to problems in engineering systems, the physical and life sciences, economics and other areas. Proposals for special issues in cutting-edge areas are welcome and should be directed to the Editor-in-Chief who will review accordingly.
In recent years there has been a growing interaction between current research in probability theory and problems in stochastic systems. The objective of Stochastics is to encourage this trend, promoting an awareness of the latest theoretical developments on the one hand and of mathematical problems arising in applications on the other.