视频数据库系统中的查询处理

J. Bang, Gaurav Tarlok Kakkar, Pramod Chunduri, Subrata Mitra, Joy Arulraj
{"title":"视频数据库系统中的查询处理","authors":"J. Bang, Gaurav Tarlok Kakkar, Pramod Chunduri, Subrata Mitra, Joy Arulraj","doi":"10.14778/3598581.3598599","DOIUrl":null,"url":null,"abstract":"State-of-the-art video database management systems (VDBMSs) often use lightweight proxy models to accelerate object retrieval and aggregate queries. The key assumption underlying these systems is that the proxy model is an order of magnitude faster than the heavyweight oracle model. However, recent advances in computer vision have invalidated this assumption. Inference time of recently proposed oracle models is on par with or even lower than the proxy models used in state-of-the-art (SoTA) VDBMSs. This paper presents Seiden, a VDBMS that leverages this radical shift in the runtime gap between the oracle and proxy models. Instead of relying on a proxy model, Seiden directly applies the oracle model over a subset of frames to build a query-agnostic index, and samples additional frames to answer the query using an exploration-exploitation scheme during query processing. By leveraging the temporal continuity of the video and the output of the oracle model on the sampled frames, Seiden delivers faster query processing and better query accuracy than SoTA VDBMSs. Our empirical evaluation shows that Seiden is on average 6.6 x faster than SoTA VDBMSs across diverse queries and datasets.","PeriodicalId":20467,"journal":{"name":"Proc. VLDB Endow.","volume":"85 1","pages":"2289-2301"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SEIDEN: Revisiting Query Processing in Video Database Systems\",\"authors\":\"J. Bang, Gaurav Tarlok Kakkar, Pramod Chunduri, Subrata Mitra, Joy Arulraj\",\"doi\":\"10.14778/3598581.3598599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"State-of-the-art video database management systems (VDBMSs) often use lightweight proxy models to accelerate object retrieval and aggregate queries. The key assumption underlying these systems is that the proxy model is an order of magnitude faster than the heavyweight oracle model. However, recent advances in computer vision have invalidated this assumption. Inference time of recently proposed oracle models is on par with or even lower than the proxy models used in state-of-the-art (SoTA) VDBMSs. This paper presents Seiden, a VDBMS that leverages this radical shift in the runtime gap between the oracle and proxy models. Instead of relying on a proxy model, Seiden directly applies the oracle model over a subset of frames to build a query-agnostic index, and samples additional frames to answer the query using an exploration-exploitation scheme during query processing. By leveraging the temporal continuity of the video and the output of the oracle model on the sampled frames, Seiden delivers faster query processing and better query accuracy than SoTA VDBMSs. Our empirical evaluation shows that Seiden is on average 6.6 x faster than SoTA VDBMSs across diverse queries and datasets.\",\"PeriodicalId\":20467,\"journal\":{\"name\":\"Proc. VLDB Endow.\",\"volume\":\"85 1\",\"pages\":\"2289-2301\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proc. VLDB Endow.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14778/3598581.3598599\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proc. VLDB Endow.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14778/3598581.3598599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

最新的视频数据库管理系统(vdbms)通常使用轻量级代理模型来加速对象检索和聚合查询。这些系统的关键假设是代理模型比重量级oracle模型快一个数量级。然而,计算机视觉的最新进展已经推翻了这一假设。最近提出的oracle模型的推理时间与最先进的(SoTA) vdbms中使用的代理模型相当,甚至更低。本文介绍了Seiden,一种VDBMS,它利用了oracle和代理模型之间运行时差距的这种根本性转变。Seiden没有依赖代理模型,而是直接在框架子集上应用oracle模型来构建与查询无关的索引,并在查询处理期间使用探索利用方案对其他框架进行采样以回答查询。通过利用视频的时间连续性和采样帧上oracle模型的输出,Seiden提供了比SoTA vdbms更快的查询处理和更好的查询准确性。我们的经验评估表明,在不同的查询和数据集上,Seiden比SoTA vdbms平均快6.6倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SEIDEN: Revisiting Query Processing in Video Database Systems
State-of-the-art video database management systems (VDBMSs) often use lightweight proxy models to accelerate object retrieval and aggregate queries. The key assumption underlying these systems is that the proxy model is an order of magnitude faster than the heavyweight oracle model. However, recent advances in computer vision have invalidated this assumption. Inference time of recently proposed oracle models is on par with or even lower than the proxy models used in state-of-the-art (SoTA) VDBMSs. This paper presents Seiden, a VDBMS that leverages this radical shift in the runtime gap between the oracle and proxy models. Instead of relying on a proxy model, Seiden directly applies the oracle model over a subset of frames to build a query-agnostic index, and samples additional frames to answer the query using an exploration-exploitation scheme during query processing. By leveraging the temporal continuity of the video and the output of the oracle model on the sampled frames, Seiden delivers faster query processing and better query accuracy than SoTA VDBMSs. Our empirical evaluation shows that Seiden is on average 6.6 x faster than SoTA VDBMSs across diverse queries and datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信