没有规范表示的规范计算

A. Mishchenko, R. Brayton, A. Petkovska, Mathias Soeken, L. Amarù, A. Domic
{"title":"没有规范表示的规范计算","authors":"A. Mishchenko, R. Brayton, A. Petkovska, Mathias Soeken, L. Amarù, A. Domic","doi":"10.1145/3195970.3196006","DOIUrl":null,"url":null,"abstract":"A representation of a Boolean function is canonical if, given a variable order, only one instance of the representation is possible for the function. A computation is canonical if the result depends only on the Boolean function and a variable order, and does not depend on how the function is represented and how the computation is implemented.In the context of Boolean satisfiability (SAT), canonicity of the computation implies that the result (a satisfying assignment for satisfiable instances and an abstraction of the unsat core for unsatisfiable instances) does not depend on the functional representation and the SAT solver used.This paper shows that SAT-based computations can be made canonical, even though the SAT solver is not using a canonical data structure. This brings advantages in EDA applications, such as irredundant sum of product (ISOP) computation, counter-example minimization, etc, where the uniqueness of solutions and/or improved quality of results justify a runtime overhead.","PeriodicalId":6491,"journal":{"name":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","volume":"126 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Canonical Computation without Canonical Representation\",\"authors\":\"A. Mishchenko, R. Brayton, A. Petkovska, Mathias Soeken, L. Amarù, A. Domic\",\"doi\":\"10.1145/3195970.3196006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A representation of a Boolean function is canonical if, given a variable order, only one instance of the representation is possible for the function. A computation is canonical if the result depends only on the Boolean function and a variable order, and does not depend on how the function is represented and how the computation is implemented.In the context of Boolean satisfiability (SAT), canonicity of the computation implies that the result (a satisfying assignment for satisfiable instances and an abstraction of the unsat core for unsatisfiable instances) does not depend on the functional representation and the SAT solver used.This paper shows that SAT-based computations can be made canonical, even though the SAT solver is not using a canonical data structure. This brings advantages in EDA applications, such as irredundant sum of product (ISOP) computation, counter-example minimization, etc, where the uniqueness of solutions and/or improved quality of results justify a runtime overhead.\",\"PeriodicalId\":6491,\"journal\":{\"name\":\"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)\",\"volume\":\"126 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3195970.3196006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3195970.3196006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

如果给定一个变量顺序,布尔函数的表示只有一个可能的实例,则该函数的表示是规范的。如果结果仅依赖于布尔函数和变量顺序,而不依赖于函数的表示方式和计算的实现方式,则计算是规范的。在布尔可满足性(SAT)的背景下,计算的规定性意味着结果(可满足实例的令人满意的赋值和不可满足实例的非SAT核心的抽象)不依赖于所使用的功能表示和SAT求解器。本文表明,基于SAT的计算可以规范化,即使SAT求解器不使用规范化数据结构。这在EDA应用程序中带来了优势,例如无冗余乘积和(ISOP)计算,反例最小化等,其中解决方案的唯一性和/或改进的结果质量证明了运行时开销是合理的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Canonical Computation without Canonical Representation
A representation of a Boolean function is canonical if, given a variable order, only one instance of the representation is possible for the function. A computation is canonical if the result depends only on the Boolean function and a variable order, and does not depend on how the function is represented and how the computation is implemented.In the context of Boolean satisfiability (SAT), canonicity of the computation implies that the result (a satisfying assignment for satisfiable instances and an abstraction of the unsat core for unsatisfiable instances) does not depend on the functional representation and the SAT solver used.This paper shows that SAT-based computations can be made canonical, even though the SAT solver is not using a canonical data structure. This brings advantages in EDA applications, such as irredundant sum of product (ISOP) computation, counter-example minimization, etc, where the uniqueness of solutions and/or improved quality of results justify a runtime overhead.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信