IconIntent: Android应用中基于图标分类的敏感UI小部件的自动识别

Xusheng Xiao, Xiaoyin Wang, Zhihao Cao, Hanlin Wang, Peng Gao
{"title":"IconIntent: Android应用中基于图标分类的敏感UI小部件的自动识别","authors":"Xusheng Xiao, Xiaoyin Wang, Zhihao Cao, Hanlin Wang, Peng Gao","doi":"10.1109/ICSE.2019.00041","DOIUrl":null,"url":null,"abstract":"Many mobile applications (i.e., apps) include UI widgets to use or collect users' sensitive data. Thus, to identify suspicious sensitive data usage such as UI-permission mismatch, it is crucial to understand the intentions of UI widgets. However, many UI widgets leverage icons of specific shapes (object icons) and icons embedded with text (text icons) to express their intentions, posing challenges for existing detection techniques that analyze only textual data to identify sensitive UI widgets. In this work, we propose a novel app analysis framework, ICONINTENT, that synergistically combines program analysis and icon classification to identify sensitive UI widgets in Android apps. ICONINTENT automatically associates UI widgets and icons via static analysis on app's UI layout files and code, and then adapts computer vision techniques to classify the associated icons into eight categories of sensitive data. Our evaluations of ICONINTENT on 150 apps from Google Play show that ICONINTENT can detect 248 sensitive UI widgets in 97 apps, achieving a precision of 82.4%. When combined with SUPOR, the state-of-the-art sensitive UI widget identification technique based on text analysis, SUPOR +ICONINTENT can detect 487 sensitive UI widgets (101.2% improvement over SUPOR only), and reduces suspicious permissions to be inspected by 50.7% (129.4% improvement over SUPOR only).","PeriodicalId":6736,"journal":{"name":"2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE)","volume":"126 1","pages":"257-268"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"IconIntent: Automatic Identification of Sensitive UI Widgets Based on Icon Classification for Android Apps\",\"authors\":\"Xusheng Xiao, Xiaoyin Wang, Zhihao Cao, Hanlin Wang, Peng Gao\",\"doi\":\"10.1109/ICSE.2019.00041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many mobile applications (i.e., apps) include UI widgets to use or collect users' sensitive data. Thus, to identify suspicious sensitive data usage such as UI-permission mismatch, it is crucial to understand the intentions of UI widgets. However, many UI widgets leverage icons of specific shapes (object icons) and icons embedded with text (text icons) to express their intentions, posing challenges for existing detection techniques that analyze only textual data to identify sensitive UI widgets. In this work, we propose a novel app analysis framework, ICONINTENT, that synergistically combines program analysis and icon classification to identify sensitive UI widgets in Android apps. ICONINTENT automatically associates UI widgets and icons via static analysis on app's UI layout files and code, and then adapts computer vision techniques to classify the associated icons into eight categories of sensitive data. Our evaluations of ICONINTENT on 150 apps from Google Play show that ICONINTENT can detect 248 sensitive UI widgets in 97 apps, achieving a precision of 82.4%. When combined with SUPOR, the state-of-the-art sensitive UI widget identification technique based on text analysis, SUPOR +ICONINTENT can detect 487 sensitive UI widgets (101.2% improvement over SUPOR only), and reduces suspicious permissions to be inspected by 50.7% (129.4% improvement over SUPOR only).\",\"PeriodicalId\":6736,\"journal\":{\"name\":\"2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE)\",\"volume\":\"126 1\",\"pages\":\"257-268\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSE.2019.00041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSE.2019.00041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

摘要

许多移动应用程序(即应用程序)包括UI小部件来使用或收集用户的敏感数据。因此,要识别可疑的敏感数据使用,如UI权限不匹配,理解UI小部件的意图至关重要。然而,许多UI小部件利用特定形状的图标(对象图标)和嵌入文本的图标(文本图标)来表达它们的意图,这对现有的仅分析文本数据以识别敏感UI小部件的检测技术提出了挑战。在这项工作中,我们提出了一个新的应用程序分析框架,ICONINTENT,它协同结合了程序分析和图标分类,以识别Android应用程序中的敏感UI小部件。ICONINTENT通过对app的UI布局文件和代码进行静态分析,自动关联UI小部件和图标,然后利用计算机视觉技术将关联的图标分为8类敏感数据。我们对来自Google Play的150个应用程序的ICONINTENT评估表明,ICONINTENT可以检测97个应用程序中的248个敏感UI小部件,精度达到82.4%。当与基于文本分析的最先进的敏感UI小部件识别技术SUPOR结合使用时,SUPOR +ICONINTENT可以检测487个敏感UI小部件(仅比SUPOR提高101.2%),并将可疑权限检查减少50.7%(仅比SUPOR提高129.4%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IconIntent: Automatic Identification of Sensitive UI Widgets Based on Icon Classification for Android Apps
Many mobile applications (i.e., apps) include UI widgets to use or collect users' sensitive data. Thus, to identify suspicious sensitive data usage such as UI-permission mismatch, it is crucial to understand the intentions of UI widgets. However, many UI widgets leverage icons of specific shapes (object icons) and icons embedded with text (text icons) to express their intentions, posing challenges for existing detection techniques that analyze only textual data to identify sensitive UI widgets. In this work, we propose a novel app analysis framework, ICONINTENT, that synergistically combines program analysis and icon classification to identify sensitive UI widgets in Android apps. ICONINTENT automatically associates UI widgets and icons via static analysis on app's UI layout files and code, and then adapts computer vision techniques to classify the associated icons into eight categories of sensitive data. Our evaluations of ICONINTENT on 150 apps from Google Play show that ICONINTENT can detect 248 sensitive UI widgets in 97 apps, achieving a precision of 82.4%. When combined with SUPOR, the state-of-the-art sensitive UI widget identification technique based on text analysis, SUPOR +ICONINTENT can detect 487 sensitive UI widgets (101.2% improvement over SUPOR only), and reduces suspicious permissions to be inspected by 50.7% (129.4% improvement over SUPOR only).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信