{"title":"中富勒烯从C32到C60生长的几何模型","authors":"Alexander I. Melker, Maria A. Krupina","doi":"10.1016/j.spjpm.2017.02.002","DOIUrl":null,"url":null,"abstract":"<div><p>Axonometric projections together with the corresponding graphs for fullerenes are constructed in the range from 32 to 60. The growth of fullerenes is studied on the basis of a mechanism according to which a carbon dimer embeds in a hexagon of an initial fullerene. This leads to stretching and breaking the covalent bonds which are parallel to arising tensile forces. In this case, instead of a hexagon adjoining two pentagons, two adjacent pentagons adjoining two hexagons are obtained. As a result, there arises a new atomic configuration and there is mass increase of two carbon atoms. We considered the direct descendants of fullerene C32; namely, C2n, where n<!--> <!-->=<!--> <!-->17–30.</p></div>","PeriodicalId":41808,"journal":{"name":"St Petersburg Polytechnic University Journal-Physics and Mathematics","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.spjpm.2017.02.002","citationCount":"10","resultStr":"{\"title\":\"Geometric modeling of midi-fullerene growth from C32 to C60\",\"authors\":\"Alexander I. Melker, Maria A. Krupina\",\"doi\":\"10.1016/j.spjpm.2017.02.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Axonometric projections together with the corresponding graphs for fullerenes are constructed in the range from 32 to 60. The growth of fullerenes is studied on the basis of a mechanism according to which a carbon dimer embeds in a hexagon of an initial fullerene. This leads to stretching and breaking the covalent bonds which are parallel to arising tensile forces. In this case, instead of a hexagon adjoining two pentagons, two adjacent pentagons adjoining two hexagons are obtained. As a result, there arises a new atomic configuration and there is mass increase of two carbon atoms. We considered the direct descendants of fullerene C32; namely, C2n, where n<!--> <!-->=<!--> <!-->17–30.</p></div>\",\"PeriodicalId\":41808,\"journal\":{\"name\":\"St Petersburg Polytechnic University Journal-Physics and Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.spjpm.2017.02.002\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"St Petersburg Polytechnic University Journal-Physics and Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405722317300099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Polytechnic University Journal-Physics and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405722317300099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Geometric modeling of midi-fullerene growth from C32 to C60
Axonometric projections together with the corresponding graphs for fullerenes are constructed in the range from 32 to 60. The growth of fullerenes is studied on the basis of a mechanism according to which a carbon dimer embeds in a hexagon of an initial fullerene. This leads to stretching and breaking the covalent bonds which are parallel to arising tensile forces. In this case, instead of a hexagon adjoining two pentagons, two adjacent pentagons adjoining two hexagons are obtained. As a result, there arises a new atomic configuration and there is mass increase of two carbon atoms. We considered the direct descendants of fullerene C32; namely, C2n, where n = 17–30.