{"title":"近似不可压缩弹性和Stokes流的线性非协调有限元子空间","authors":"Shangyou Zhang","doi":"10.1515/jnma-2022-0010","DOIUrl":null,"url":null,"abstract":"Abstract The linear nonconforming finite element, combined with constant finite element for pressure, is stable for the Stokes problem. But it does not satisfy the discrete Korn inequality. The linear conforming finite element satisfies the discrete Korn inequality, but is not stable for the Stokes problem and fails for the nearly incompressible elasticity problems. We enrich the linear conforming finite element by some nonconforming P1 bubbles, i.e., select a subspace of the linear nonconforming finite element space, so that the resulting linear nonconforming element is both stable and conforming enough to satisfy the Korn inequality, on HTC-type triangular and tetrahedral grids. Numerical tests in 2D and 3D are presented, confirming the analysis.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A subspace of linear nonconforming finite element for nearly incompressible elasticity and Stokes flow\",\"authors\":\"Shangyou Zhang\",\"doi\":\"10.1515/jnma-2022-0010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The linear nonconforming finite element, combined with constant finite element for pressure, is stable for the Stokes problem. But it does not satisfy the discrete Korn inequality. The linear conforming finite element satisfies the discrete Korn inequality, but is not stable for the Stokes problem and fails for the nearly incompressible elasticity problems. We enrich the linear conforming finite element by some nonconforming P1 bubbles, i.e., select a subspace of the linear nonconforming finite element space, so that the resulting linear nonconforming element is both stable and conforming enough to satisfy the Korn inequality, on HTC-type triangular and tetrahedral grids. Numerical tests in 2D and 3D are presented, confirming the analysis.\",\"PeriodicalId\":50109,\"journal\":{\"name\":\"Journal of Numerical Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2022-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jnma-2022-0010\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jnma-2022-0010","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A subspace of linear nonconforming finite element for nearly incompressible elasticity and Stokes flow
Abstract The linear nonconforming finite element, combined with constant finite element for pressure, is stable for the Stokes problem. But it does not satisfy the discrete Korn inequality. The linear conforming finite element satisfies the discrete Korn inequality, but is not stable for the Stokes problem and fails for the nearly incompressible elasticity problems. We enrich the linear conforming finite element by some nonconforming P1 bubbles, i.e., select a subspace of the linear nonconforming finite element space, so that the resulting linear nonconforming element is both stable and conforming enough to satisfy the Korn inequality, on HTC-type triangular and tetrahedral grids. Numerical tests in 2D and 3D are presented, confirming the analysis.
期刊介绍:
The Journal of Numerical Mathematics (formerly East-West Journal of Numerical Mathematics) contains high-quality papers featuring contemporary research in all areas of Numerical Mathematics. This includes the development, analysis, and implementation of new and innovative methods in Numerical Linear Algebra, Numerical Analysis, Optimal Control/Optimization, and Scientific Computing. The journal will also publish applications-oriented papers with significant mathematical content in computational fluid dynamics and other areas of computational engineering, finance, and life sciences.