近似不可压缩弹性和Stokes流的线性非协调有限元子空间

IF 3.8 2区 数学 Q1 MATHEMATICS
Shangyou Zhang
{"title":"近似不可压缩弹性和Stokes流的线性非协调有限元子空间","authors":"Shangyou Zhang","doi":"10.1515/jnma-2022-0010","DOIUrl":null,"url":null,"abstract":"Abstract The linear nonconforming finite element, combined with constant finite element for pressure, is stable for the Stokes problem. But it does not satisfy the discrete Korn inequality. The linear conforming finite element satisfies the discrete Korn inequality, but is not stable for the Stokes problem and fails for the nearly incompressible elasticity problems. We enrich the linear conforming finite element by some nonconforming P1 bubbles, i.e., select a subspace of the linear nonconforming finite element space, so that the resulting linear nonconforming element is both stable and conforming enough to satisfy the Korn inequality, on HTC-type triangular and tetrahedral grids. Numerical tests in 2D and 3D are presented, confirming the analysis.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A subspace of linear nonconforming finite element for nearly incompressible elasticity and Stokes flow\",\"authors\":\"Shangyou Zhang\",\"doi\":\"10.1515/jnma-2022-0010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The linear nonconforming finite element, combined with constant finite element for pressure, is stable for the Stokes problem. But it does not satisfy the discrete Korn inequality. The linear conforming finite element satisfies the discrete Korn inequality, but is not stable for the Stokes problem and fails for the nearly incompressible elasticity problems. We enrich the linear conforming finite element by some nonconforming P1 bubbles, i.e., select a subspace of the linear nonconforming finite element space, so that the resulting linear nonconforming element is both stable and conforming enough to satisfy the Korn inequality, on HTC-type triangular and tetrahedral grids. Numerical tests in 2D and 3D are presented, confirming the analysis.\",\"PeriodicalId\":50109,\"journal\":{\"name\":\"Journal of Numerical Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2022-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jnma-2022-0010\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jnma-2022-0010","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于Stokes问题,线性非协调有限元与压力的恒定有限元相结合是稳定的。但它不满足离散Korn不等式。线性拟合有限元满足离散Korn不等式,但对于Stokes问题不稳定,对于近不可压缩弹性问题不稳定。我们通过一些不协调P1泡来丰富线性不协调有限元,即在线性不协调有限元空间中选择一个子空间,使得到的线性不协调单元在htc型三角形和四面体网格上既稳定又协调,足以满足Korn不等式。给出了二维和三维数值试验,验证了分析结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A subspace of linear nonconforming finite element for nearly incompressible elasticity and Stokes flow
Abstract The linear nonconforming finite element, combined with constant finite element for pressure, is stable for the Stokes problem. But it does not satisfy the discrete Korn inequality. The linear conforming finite element satisfies the discrete Korn inequality, but is not stable for the Stokes problem and fails for the nearly incompressible elasticity problems. We enrich the linear conforming finite element by some nonconforming P1 bubbles, i.e., select a subspace of the linear nonconforming finite element space, so that the resulting linear nonconforming element is both stable and conforming enough to satisfy the Korn inequality, on HTC-type triangular and tetrahedral grids. Numerical tests in 2D and 3D are presented, confirming the analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
3.30%
发文量
17
审稿时长
>12 weeks
期刊介绍: The Journal of Numerical Mathematics (formerly East-West Journal of Numerical Mathematics) contains high-quality papers featuring contemporary research in all areas of Numerical Mathematics. This includes the development, analysis, and implementation of new and innovative methods in Numerical Linear Algebra, Numerical Analysis, Optimal Control/Optimization, and Scientific Computing. The journal will also publish applications-oriented papers with significant mathematical content in computational fluid dynamics and other areas of computational engineering, finance, and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信