{"title":"低温表面硬化不锈钢部件的尺寸稳定性*","authors":"A. Bauer, K. Schreiner","doi":"10.1515/htm-2021-0022","DOIUrl":null,"url":null,"abstract":"Abstract Stainless steels are commonly used for high precision components, which often are exposed to corrosive media. However, their inferior tribological behaviour restrict the use of these materials in many technical applications. Thermochemical surface hardening is one way to overcome these weaknesses. Solution nitriding in the austenitic range above 1000 °C is mainly used for hardening martensitic and ferritic stainless grades. In austenitic and duplex stainless grades, however, the hardening effect is limited. Additionally, the high process temperatures combined with a necessary rapid cooling may lead to non-desired dimensional changes. Low temperature surface hardening processing below 500 °C here offers interesting alternatives for increasing the wear properties, while maintaining the corrosion resistance. This paper demonstrates the influence of high and low process temperatures of thermochemical surface hardening treatments on the tight dimensional tolerances of a rotationally symmetrical precision component made from cold worked AISI 304. Based on these results, current and new industrial applications, which benefit from low temperature surface hardening, will be discussed.","PeriodicalId":44294,"journal":{"name":"HTM-Journal of Heat Treatment and Materials","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2021-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dimensional Stability of Low Temperature Surface Hardened Stainless Steel Components*\",\"authors\":\"A. Bauer, K. Schreiner\",\"doi\":\"10.1515/htm-2021-0022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Stainless steels are commonly used for high precision components, which often are exposed to corrosive media. However, their inferior tribological behaviour restrict the use of these materials in many technical applications. Thermochemical surface hardening is one way to overcome these weaknesses. Solution nitriding in the austenitic range above 1000 °C is mainly used for hardening martensitic and ferritic stainless grades. In austenitic and duplex stainless grades, however, the hardening effect is limited. Additionally, the high process temperatures combined with a necessary rapid cooling may lead to non-desired dimensional changes. Low temperature surface hardening processing below 500 °C here offers interesting alternatives for increasing the wear properties, while maintaining the corrosion resistance. This paper demonstrates the influence of high and low process temperatures of thermochemical surface hardening treatments on the tight dimensional tolerances of a rotationally symmetrical precision component made from cold worked AISI 304. Based on these results, current and new industrial applications, which benefit from low temperature surface hardening, will be discussed.\",\"PeriodicalId\":44294,\"journal\":{\"name\":\"HTM-Journal of Heat Treatment and Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HTM-Journal of Heat Treatment and Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/htm-2021-0022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HTM-Journal of Heat Treatment and Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/htm-2021-0022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
Dimensional Stability of Low Temperature Surface Hardened Stainless Steel Components*
Abstract Stainless steels are commonly used for high precision components, which often are exposed to corrosive media. However, their inferior tribological behaviour restrict the use of these materials in many technical applications. Thermochemical surface hardening is one way to overcome these weaknesses. Solution nitriding in the austenitic range above 1000 °C is mainly used for hardening martensitic and ferritic stainless grades. In austenitic and duplex stainless grades, however, the hardening effect is limited. Additionally, the high process temperatures combined with a necessary rapid cooling may lead to non-desired dimensional changes. Low temperature surface hardening processing below 500 °C here offers interesting alternatives for increasing the wear properties, while maintaining the corrosion resistance. This paper demonstrates the influence of high and low process temperatures of thermochemical surface hardening treatments on the tight dimensional tolerances of a rotationally symmetrical precision component made from cold worked AISI 304. Based on these results, current and new industrial applications, which benefit from low temperature surface hardening, will be discussed.