{"title":"阿基米德:基于概率知识库的高效查询处理","authors":"Yang Chen, Xiaofeng Zhou, Kun Li, Daisy Zhe Wang","doi":"10.1145/3137586.3137592","DOIUrl":null,"url":null,"abstract":"We present the ARCHIMEDES system for efficient query processing over probabilistic knowledge bases. We design ARCHIMEDES for knowledge bases containing incomplete and uncertain information due to limitations of information sources and human knowledge. Answering queries over these knowledge bases requires efficient probabilistic inference. In this paper, we describe ARCHIMEDES's efficient knowledge expansion and querydriven inference over UDA-GIST, an in-database unified data- and graph-parallel computation framework. With an efficient inference engine, ARCHIMEDES produces reasonable results for queries over large uncertain knowledge bases. We use the Reverb-Sherlock andWikilinks knowledge bases to show ARCHIMEDES achieves satisfactory quality with real-time performance.","PeriodicalId":21740,"journal":{"name":"SIGMOD Rec.","volume":"79 1","pages":"30-35"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Archimedes: Efficient Query Processing over Probabilistic Knowledge Bases\",\"authors\":\"Yang Chen, Xiaofeng Zhou, Kun Li, Daisy Zhe Wang\",\"doi\":\"10.1145/3137586.3137592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the ARCHIMEDES system for efficient query processing over probabilistic knowledge bases. We design ARCHIMEDES for knowledge bases containing incomplete and uncertain information due to limitations of information sources and human knowledge. Answering queries over these knowledge bases requires efficient probabilistic inference. In this paper, we describe ARCHIMEDES's efficient knowledge expansion and querydriven inference over UDA-GIST, an in-database unified data- and graph-parallel computation framework. With an efficient inference engine, ARCHIMEDES produces reasonable results for queries over large uncertain knowledge bases. We use the Reverb-Sherlock andWikilinks knowledge bases to show ARCHIMEDES achieves satisfactory quality with real-time performance.\",\"PeriodicalId\":21740,\"journal\":{\"name\":\"SIGMOD Rec.\",\"volume\":\"79 1\",\"pages\":\"30-35\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGMOD Rec.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3137586.3137592\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGMOD Rec.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3137586.3137592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Archimedes: Efficient Query Processing over Probabilistic Knowledge Bases
We present the ARCHIMEDES system for efficient query processing over probabilistic knowledge bases. We design ARCHIMEDES for knowledge bases containing incomplete and uncertain information due to limitations of information sources and human knowledge. Answering queries over these knowledge bases requires efficient probabilistic inference. In this paper, we describe ARCHIMEDES's efficient knowledge expansion and querydriven inference over UDA-GIST, an in-database unified data- and graph-parallel computation framework. With an efficient inference engine, ARCHIMEDES produces reasonable results for queries over large uncertain knowledge bases. We use the Reverb-Sherlock andWikilinks knowledge bases to show ARCHIMEDES achieves satisfactory quality with real-time performance.