阿基米德:基于概率知识库的高效查询处理

Yang Chen, Xiaofeng Zhou, Kun Li, Daisy Zhe Wang
{"title":"阿基米德:基于概率知识库的高效查询处理","authors":"Yang Chen, Xiaofeng Zhou, Kun Li, Daisy Zhe Wang","doi":"10.1145/3137586.3137592","DOIUrl":null,"url":null,"abstract":"We present the ARCHIMEDES system for efficient query processing over probabilistic knowledge bases. We design ARCHIMEDES for knowledge bases containing incomplete and uncertain information due to limitations of information sources and human knowledge. Answering queries over these knowledge bases requires efficient probabilistic inference. In this paper, we describe ARCHIMEDES's efficient knowledge expansion and querydriven inference over UDA-GIST, an in-database unified data- and graph-parallel computation framework. With an efficient inference engine, ARCHIMEDES produces reasonable results for queries over large uncertain knowledge bases. We use the Reverb-Sherlock andWikilinks knowledge bases to show ARCHIMEDES achieves satisfactory quality with real-time performance.","PeriodicalId":21740,"journal":{"name":"SIGMOD Rec.","volume":"79 1","pages":"30-35"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Archimedes: Efficient Query Processing over Probabilistic Knowledge Bases\",\"authors\":\"Yang Chen, Xiaofeng Zhou, Kun Li, Daisy Zhe Wang\",\"doi\":\"10.1145/3137586.3137592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the ARCHIMEDES system for efficient query processing over probabilistic knowledge bases. We design ARCHIMEDES for knowledge bases containing incomplete and uncertain information due to limitations of information sources and human knowledge. Answering queries over these knowledge bases requires efficient probabilistic inference. In this paper, we describe ARCHIMEDES's efficient knowledge expansion and querydriven inference over UDA-GIST, an in-database unified data- and graph-parallel computation framework. With an efficient inference engine, ARCHIMEDES produces reasonable results for queries over large uncertain knowledge bases. We use the Reverb-Sherlock andWikilinks knowledge bases to show ARCHIMEDES achieves satisfactory quality with real-time performance.\",\"PeriodicalId\":21740,\"journal\":{\"name\":\"SIGMOD Rec.\",\"volume\":\"79 1\",\"pages\":\"30-35\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGMOD Rec.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3137586.3137592\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGMOD Rec.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3137586.3137592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种基于概率知识库的高效查询处理的阿基米德系统。由于信息源和人类知识的限制,我们为包含不完整和不确定信息的知识库设计了阿基米德。回答对这些知识库的查询需要有效的概率推理。本文描述了ARCHIMEDES在数据库内统一的数据和图并行计算框架UDA-GIST上的高效知识扩展和查询驱动推理。凭借高效的推理引擎,阿基米德可以在大量不确定知识库的查询中产生合理的结果。我们使用Reverb-Sherlock和wikilinks知识库来显示阿基米德具有令人满意的质量和实时性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Archimedes: Efficient Query Processing over Probabilistic Knowledge Bases
We present the ARCHIMEDES system for efficient query processing over probabilistic knowledge bases. We design ARCHIMEDES for knowledge bases containing incomplete and uncertain information due to limitations of information sources and human knowledge. Answering queries over these knowledge bases requires efficient probabilistic inference. In this paper, we describe ARCHIMEDES's efficient knowledge expansion and querydriven inference over UDA-GIST, an in-database unified data- and graph-parallel computation framework. With an efficient inference engine, ARCHIMEDES produces reasonable results for queries over large uncertain knowledge bases. We use the Reverb-Sherlock andWikilinks knowledge bases to show ARCHIMEDES achieves satisfactory quality with real-time performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信