斐波那契数是两个平衡数的乘积

IF 0.3 Q4 MATHEMATICS
F. Erduvan, R. Keskin
{"title":"斐波那契数是两个平衡数的乘积","authors":"F. Erduvan, R. Keskin","doi":"10.33039/AMI.2019.06.001","DOIUrl":null,"url":null,"abstract":"The Fibonacci sequence (Fn) is defined by F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 2. The balancing number sequence (Bn) is defined by B0 = 0, B1 = 1 and Bn = 6Bn−1 − Bn−2 for n ≥ 2. In this paper, we find all Fibonacci numbers which are products of two balancing numbers. Also we found all balancing numbers which are products of two Fibonacci numbers. More generally, taking k,m,m as positive integers, it is proved that Fk = BmBn implies that (k,m, n) = (1, 1, 1), (2, 1, 1) and Bk = FmFn implies that (k,m, n) = (1, 1, 1), (1, 1, 2), (1, 2, 2), (2, 3, 4).","PeriodicalId":43454,"journal":{"name":"Annales Mathematicae et Informaticae","volume":"252 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fibonacci numbers which are products of two balancing numbers\",\"authors\":\"F. Erduvan, R. Keskin\",\"doi\":\"10.33039/AMI.2019.06.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Fibonacci sequence (Fn) is defined by F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 2. The balancing number sequence (Bn) is defined by B0 = 0, B1 = 1 and Bn = 6Bn−1 − Bn−2 for n ≥ 2. In this paper, we find all Fibonacci numbers which are products of two balancing numbers. Also we found all balancing numbers which are products of two Fibonacci numbers. More generally, taking k,m,m as positive integers, it is proved that Fk = BmBn implies that (k,m, n) = (1, 1, 1), (2, 1, 1) and Bk = FmFn implies that (k,m, n) = (1, 1, 1), (1, 1, 2), (1, 2, 2), (2, 3, 4).\",\"PeriodicalId\":43454,\"journal\":{\"name\":\"Annales Mathematicae et Informaticae\",\"volume\":\"252 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematicae et Informaticae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33039/AMI.2019.06.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae et Informaticae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33039/AMI.2019.06.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

当n≥2时,Fibonacci序列Fn定义为F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2。平衡数列Bn定义为:当n≥2时,B0 = 0, B1 = 1, Bn = 60 - 1 - Bn - 2。在本文中,我们找到了两个平衡数乘积的所有斐波那契数。我们还找到了所有的平衡数它们是两个斐波那契数的乘积。更一般地,取k,m,m为正整数,证明了Fk = BmBn意味着(k,m, n) = (1,1,1), (2,1,1), Bk = FmFn意味着(k,m, n) =(1,1,1),(1,1,2),(1,2,2),(2,3,4)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fibonacci numbers which are products of two balancing numbers
The Fibonacci sequence (Fn) is defined by F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 2. The balancing number sequence (Bn) is defined by B0 = 0, B1 = 1 and Bn = 6Bn−1 − Bn−2 for n ≥ 2. In this paper, we find all Fibonacci numbers which are products of two balancing numbers. Also we found all balancing numbers which are products of two Fibonacci numbers. More generally, taking k,m,m as positive integers, it is proved that Fk = BmBn implies that (k,m, n) = (1, 1, 1), (2, 1, 1) and Bk = FmFn implies that (k,m, n) = (1, 1, 1), (1, 1, 2), (1, 2, 2), (2, 3, 4).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信