大数据和云应用监控工具概述

Gabriel Iuhasz, I. Drăgan
{"title":"大数据和云应用监控工具概述","authors":"Gabriel Iuhasz, I. Drăgan","doi":"10.1109/SYNASC.2015.62","DOIUrl":null,"url":null,"abstract":"This paper makes a short overview of current state of the art monitoring tools for cloud and big data frameworks. In order to effectively create, test and deploy new algorithms or frameworks one needs suitable monitoring solutions. Hence we aim on creating a critical overview for some of the monitoring solutions existing on the market. Also we present relevant metrics used for monitoring cloud and big data applications, focused mainly on cloud deployment scenarios for big data frameworks.","PeriodicalId":6488,"journal":{"name":"2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"305 1","pages":"363-366"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"An Overview of Monitoring Tools for Big Data and Cloud Applications\",\"authors\":\"Gabriel Iuhasz, I. Drăgan\",\"doi\":\"10.1109/SYNASC.2015.62\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper makes a short overview of current state of the art monitoring tools for cloud and big data frameworks. In order to effectively create, test and deploy new algorithms or frameworks one needs suitable monitoring solutions. Hence we aim on creating a critical overview for some of the monitoring solutions existing on the market. Also we present relevant metrics used for monitoring cloud and big data applications, focused mainly on cloud deployment scenarios for big data frameworks.\",\"PeriodicalId\":6488,\"journal\":{\"name\":\"2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"305 1\",\"pages\":\"363-366\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2015.62\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2015.62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文简要概述了当前用于云和大数据框架的最先进的监控工具的状态。为了有效地创建、测试和部署新的算法或框架,需要合适的监控解决方案。因此,我们的目标是为市场上现有的一些监控解决方案创建一个关键的概述。此外,我们还介绍了用于监控云和大数据应用程序的相关指标,主要关注大数据框架的云部署场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Overview of Monitoring Tools for Big Data and Cloud Applications
This paper makes a short overview of current state of the art monitoring tools for cloud and big data frameworks. In order to effectively create, test and deploy new algorithms or frameworks one needs suitable monitoring solutions. Hence we aim on creating a critical overview for some of the monitoring solutions existing on the market. Also we present relevant metrics used for monitoring cloud and big data applications, focused mainly on cloud deployment scenarios for big data frameworks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信