Rui Yang, Bingbing Ni, Chao Ma, Yi Xu, Xiaokang Yang
{"title":"基于多粒度分析的视频分割","authors":"Rui Yang, Bingbing Ni, Chao Ma, Yi Xu, Xiaokang Yang","doi":"10.1109/CVPR.2017.676","DOIUrl":null,"url":null,"abstract":"We introduce a Multiple Granularity Analysis framework for video segmentation in a coarse-to-fine manner. We cast video segmentation as a spatio-temporal superpixel labeling problem. Benefited from the bounding volume provided by off-the-shelf object trackers, we estimate the foreground/ background super-pixel labeling using the spatiotemporal multiple instance learning algorithm to obtain coarse foreground/background separation within the volume. We further refine the segmentation mask in the pixel level using the graph-cut model. Extensive experiments on benchmark video datasets demonstrate the superior performance of the proposed video segmentation algorithm.","PeriodicalId":6631,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"23 1","pages":"6383-6392"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Video Segmentation via Multiple Granularity Analysis\",\"authors\":\"Rui Yang, Bingbing Ni, Chao Ma, Yi Xu, Xiaokang Yang\",\"doi\":\"10.1109/CVPR.2017.676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a Multiple Granularity Analysis framework for video segmentation in a coarse-to-fine manner. We cast video segmentation as a spatio-temporal superpixel labeling problem. Benefited from the bounding volume provided by off-the-shelf object trackers, we estimate the foreground/ background super-pixel labeling using the spatiotemporal multiple instance learning algorithm to obtain coarse foreground/background separation within the volume. We further refine the segmentation mask in the pixel level using the graph-cut model. Extensive experiments on benchmark video datasets demonstrate the superior performance of the proposed video segmentation algorithm.\",\"PeriodicalId\":6631,\"journal\":{\"name\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"23 1\",\"pages\":\"6383-6392\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2017.676\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2017.676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Video Segmentation via Multiple Granularity Analysis
We introduce a Multiple Granularity Analysis framework for video segmentation in a coarse-to-fine manner. We cast video segmentation as a spatio-temporal superpixel labeling problem. Benefited from the bounding volume provided by off-the-shelf object trackers, we estimate the foreground/ background super-pixel labeling using the spatiotemporal multiple instance learning algorithm to obtain coarse foreground/background separation within the volume. We further refine the segmentation mask in the pixel level using the graph-cut model. Extensive experiments on benchmark video datasets demonstrate the superior performance of the proposed video segmentation algorithm.