M. J. Pereira, Tiago A. C. Santos, R. Correia, J. Amaral, V. Amaral, S. Fabbrici, F. Albertini
{"title":"用红外热成像技术绘制铁磁形状记忆合金的微尺度磁热效应","authors":"M. J. Pereira, Tiago A. C. Santos, R. Correia, J. Amaral, V. Amaral, S. Fabbrici, F. Albertini","doi":"10.1088/2515-7639/acc13b","DOIUrl":null,"url":null,"abstract":"An innovative study of the magnetocaloric effect (MCE) was performed by mapping the effect based on direct measurements of the temperature change during magnetic field cycles with microscopic resolution (85 μm) on a Co-doped Ni–Mn–Ga bulk sample using infrared thermography on the whole sample. The MCE maps were constructed for different sample temperatures (T sample), cycling both on heating (from 272.8 K up to T sample, with T sample ⩽ 327.0 K) and on cooling (from 340.0 K down to T sample, with T sample ⩾ 266.8 K), cycling a 1.2 T magnetic field at each T sample value. The MCE maps were calculated to evaluate the amplitude of the effect at the microscale for all T sample values. This allows to analyze the contribution of each micrometric portion of the sample to the spatially heterogeneous behavior that was found. Significant differences of the MCE on heating and cooling are present associated to inhomogeneity dynamics, mostly near the structural transformation. The amplitude of the MCE and its inhomogeneity are both much more pronounced on the heating process. On the cooling process the effect behaves quite homogeneously since the structural transformation already occurred during the cooling to reach T sample. The behavior of the MCE at selected map coordinates was scrutinized, revealing significant differences amongst sample locations. Moreover, the extreme amplitudes of MCE registered for diverse micro-regions occur at different temperatures, suggesting that the structural transformation occurs at varying temperatures and with different magnitudes. The study innovates by constructing MCE maps to evaluate minority behaviors in the MCE in contrast with the average behavior of the effect. This study displays the capability to discriminate the behavior of the transformation at the microscale.","PeriodicalId":16520,"journal":{"name":"Journal of Nonlinear Optical Physics & Materials","volume":"34 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mapping the magnetocaloric effect at the microscale on a ferromagnetic shape memory alloy with infrared thermography\",\"authors\":\"M. J. Pereira, Tiago A. C. Santos, R. Correia, J. Amaral, V. Amaral, S. Fabbrici, F. Albertini\",\"doi\":\"10.1088/2515-7639/acc13b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An innovative study of the magnetocaloric effect (MCE) was performed by mapping the effect based on direct measurements of the temperature change during magnetic field cycles with microscopic resolution (85 μm) on a Co-doped Ni–Mn–Ga bulk sample using infrared thermography on the whole sample. The MCE maps were constructed for different sample temperatures (T sample), cycling both on heating (from 272.8 K up to T sample, with T sample ⩽ 327.0 K) and on cooling (from 340.0 K down to T sample, with T sample ⩾ 266.8 K), cycling a 1.2 T magnetic field at each T sample value. The MCE maps were calculated to evaluate the amplitude of the effect at the microscale for all T sample values. This allows to analyze the contribution of each micrometric portion of the sample to the spatially heterogeneous behavior that was found. Significant differences of the MCE on heating and cooling are present associated to inhomogeneity dynamics, mostly near the structural transformation. The amplitude of the MCE and its inhomogeneity are both much more pronounced on the heating process. On the cooling process the effect behaves quite homogeneously since the structural transformation already occurred during the cooling to reach T sample. The behavior of the MCE at selected map coordinates was scrutinized, revealing significant differences amongst sample locations. Moreover, the extreme amplitudes of MCE registered for diverse micro-regions occur at different temperatures, suggesting that the structural transformation occurs at varying temperatures and with different magnitudes. The study innovates by constructing MCE maps to evaluate minority behaviors in the MCE in contrast with the average behavior of the effect. This study displays the capability to discriminate the behavior of the transformation at the microscale.\",\"PeriodicalId\":16520,\"journal\":{\"name\":\"Journal of Nonlinear Optical Physics & Materials\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonlinear Optical Physics & Materials\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2515-7639/acc13b\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Optical Physics & Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2515-7639/acc13b","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Mapping the magnetocaloric effect at the microscale on a ferromagnetic shape memory alloy with infrared thermography
An innovative study of the magnetocaloric effect (MCE) was performed by mapping the effect based on direct measurements of the temperature change during magnetic field cycles with microscopic resolution (85 μm) on a Co-doped Ni–Mn–Ga bulk sample using infrared thermography on the whole sample. The MCE maps were constructed for different sample temperatures (T sample), cycling both on heating (from 272.8 K up to T sample, with T sample ⩽ 327.0 K) and on cooling (from 340.0 K down to T sample, with T sample ⩾ 266.8 K), cycling a 1.2 T magnetic field at each T sample value. The MCE maps were calculated to evaluate the amplitude of the effect at the microscale for all T sample values. This allows to analyze the contribution of each micrometric portion of the sample to the spatially heterogeneous behavior that was found. Significant differences of the MCE on heating and cooling are present associated to inhomogeneity dynamics, mostly near the structural transformation. The amplitude of the MCE and its inhomogeneity are both much more pronounced on the heating process. On the cooling process the effect behaves quite homogeneously since the structural transformation already occurred during the cooling to reach T sample. The behavior of the MCE at selected map coordinates was scrutinized, revealing significant differences amongst sample locations. Moreover, the extreme amplitudes of MCE registered for diverse micro-regions occur at different temperatures, suggesting that the structural transformation occurs at varying temperatures and with different magnitudes. The study innovates by constructing MCE maps to evaluate minority behaviors in the MCE in contrast with the average behavior of the effect. This study displays the capability to discriminate the behavior of the transformation at the microscale.
期刊介绍:
This journal is devoted to the rapidly advancing research and development in the field of nonlinear interactions of light with matter. Topics of interest include, but are not limited to, nonlinear optical materials, metamaterials and plasmonics, nano-photonic structures, stimulated scatterings, harmonic generations, wave mixing, real time holography, guided waves and solitons, bistabilities, instabilities and nonlinear dynamics, and their applications in laser and coherent lightwave amplification, guiding, switching, modulation, communication and information processing. Original papers, comprehensive reviews and rapid communications reporting original theories and observations are sought for in these and related areas. This journal will also publish proceedings of important international meetings and workshops. It is intended for graduate students, scientists and researchers in academic, industrial and government research institutions.