在拉普拉斯流下演化的封闭翘曲g_2构造

IF 1.2 2区 数学 Q1 MATHEMATICS
A. Fino, Alberto Raffero
{"title":"在拉普拉斯流下演化的封闭翘曲g_2构造","authors":"A. Fino, Alberto Raffero","doi":"10.2422/2036-2145.201709_004","DOIUrl":null,"url":null,"abstract":"We study the behaviour of the Laplacian flow evolving closed G$_2$-structures on warped products of the form $M^6\\times{\\mathbb S}^1$, where the base $M^6$ is a compact 6-manifold endowed with an SU(3)-structure. In the general case, we reinterpret the flow as a set of evolution equations on $M^6$ for the differential forms defining the SU(3)-structure and the warping function. When the latter is constant, we find sufficient conditions for the existence of solutions of the corresponding coupled flow. This provides a method to construct immortal solutions of the Laplacian flow on the product manifolds $M^6\\times{\\mathbb S}^1$. The application of our results to explicit cases allows us to obtain new examples of expanding Laplacian solitons.","PeriodicalId":50966,"journal":{"name":"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze","volume":"2 1","pages":"315-348"},"PeriodicalIF":1.2000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Closed warped G_2-structures evolving under the Laplacian flow\",\"authors\":\"A. Fino, Alberto Raffero\",\"doi\":\"10.2422/2036-2145.201709_004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the behaviour of the Laplacian flow evolving closed G$_2$-structures on warped products of the form $M^6\\\\times{\\\\mathbb S}^1$, where the base $M^6$ is a compact 6-manifold endowed with an SU(3)-structure. In the general case, we reinterpret the flow as a set of evolution equations on $M^6$ for the differential forms defining the SU(3)-structure and the warping function. When the latter is constant, we find sufficient conditions for the existence of solutions of the corresponding coupled flow. This provides a method to construct immortal solutions of the Laplacian flow on the product manifolds $M^6\\\\times{\\\\mathbb S}^1$. The application of our results to explicit cases allows us to obtain new examples of expanding Laplacian solitons.\",\"PeriodicalId\":50966,\"journal\":{\"name\":\"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze\",\"volume\":\"2 1\",\"pages\":\"315-348\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2422/2036-2145.201709_004\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2422/2036-2145.201709_004","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 29

摘要

研究了拉普拉斯流在形式为$M^6\ * {\mathbb S}^1$的翘曲积上演化封闭G$_2$-结构的行为,其中基$M^6$是具有SU(3)-结构的紧致6流形。在一般情况下,我们将流重新解释为$M^6$上的一组演化方程,用于定义SU(3)-结构和翘曲函数的微分形式。当后者一定时,得到了相应耦合流解存在的充分条件。这提供了在积流形$M^6\乘以{\mathbb S}^1$上构造拉普拉斯流不朽解的一种方法。将我们的结果应用于显式情况,使我们能够得到扩展拉普拉斯孤子的新例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Closed warped G_2-structures evolving under the Laplacian flow
We study the behaviour of the Laplacian flow evolving closed G$_2$-structures on warped products of the form $M^6\times{\mathbb S}^1$, where the base $M^6$ is a compact 6-manifold endowed with an SU(3)-structure. In the general case, we reinterpret the flow as a set of evolution equations on $M^6$ for the differential forms defining the SU(3)-structure and the warping function. When the latter is constant, we find sufficient conditions for the existence of solutions of the corresponding coupled flow. This provides a method to construct immortal solutions of the Laplacian flow on the product manifolds $M^6\times{\mathbb S}^1$. The application of our results to explicit cases allows us to obtain new examples of expanding Laplacian solitons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Annals of the Normale Superiore di Pisa, Science Class, publishes papers that contribute to the development of Mathematics both from the theoretical and the applied point of view. Research papers or papers of expository type are considered for publication. The Annals of the Normale Scuola di Pisa - Science Class is published quarterly Soft cover, 17x24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信