DNS的泄漏和隧道检测

Anirban Das, Min-Yi Shen, M. Shashanka, Jisheng Wang
{"title":"DNS的泄漏和隧道检测","authors":"Anirban Das, Min-Yi Shen, M. Shashanka, Jisheng Wang","doi":"10.1109/ICMLA.2017.00-71","DOIUrl":null,"url":null,"abstract":"This paper proposes a method to detect two primary means of using the Domain Name System (DNS) for malicious purposes. We develop machine learning models to detect information exfiltration from compromised machines and the establishment of command & control (C&C) servers via tunneling. We validate our approach by experiments where we successfully detect a malware used in several recent Advanced Persistent Threat (APT) attacks [1]. The novelty of our method is its robustness, simplicity, scalability, and ease of deployment in a production environment.","PeriodicalId":6636,"journal":{"name":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"33 1","pages":"737-742"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Detection of Exfiltration and Tunneling over DNS\",\"authors\":\"Anirban Das, Min-Yi Shen, M. Shashanka, Jisheng Wang\",\"doi\":\"10.1109/ICMLA.2017.00-71\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a method to detect two primary means of using the Domain Name System (DNS) for malicious purposes. We develop machine learning models to detect information exfiltration from compromised machines and the establishment of command & control (C&C) servers via tunneling. We validate our approach by experiments where we successfully detect a malware used in several recent Advanced Persistent Threat (APT) attacks [1]. The novelty of our method is its robustness, simplicity, scalability, and ease of deployment in a production environment.\",\"PeriodicalId\":6636,\"journal\":{\"name\":\"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"volume\":\"33 1\",\"pages\":\"737-742\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2017.00-71\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2017.00-71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

本文提出了一种检测恶意使用域名系统(DNS)的两种主要方式的方法。我们开发了机器学习模型来检测受感染机器的信息泄露,并通过隧道建立命令与控制(C&C)服务器。我们通过实验验证了我们的方法,我们成功检测了最近几次高级持续威胁(APT)攻击b[1]中使用的恶意软件。我们方法的新颖之处在于它的健壮性、简单性、可伸缩性和易于在生产环境中部署。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of Exfiltration and Tunneling over DNS
This paper proposes a method to detect two primary means of using the Domain Name System (DNS) for malicious purposes. We develop machine learning models to detect information exfiltration from compromised machines and the establishment of command & control (C&C) servers via tunneling. We validate our approach by experiments where we successfully detect a malware used in several recent Advanced Persistent Threat (APT) attacks [1]. The novelty of our method is its robustness, simplicity, scalability, and ease of deployment in a production environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信