{"title":"具有前向和后向安全性的轻量级RFID认证","authors":"M. Burmester, J. Munilla","doi":"10.1145/1952982.1952993","DOIUrl":null,"url":null,"abstract":"We propose a lightweight RFID authentication protocol that supports forward and backward security. The only cryptographic mechanism that this protocol uses is a pseudorandom number generator (PRNG) that is shared with the backend Server. Authentication is achieved by exchanging a few numbers (3 or 5) drawn from the PRNG. The lookup time is constant, and the protocol can be easily adapted to prevent online man-in-the-middle relay attacks. Security is proven in the UC security framework.","PeriodicalId":50912,"journal":{"name":"ACM Transactions on Information and System Security","volume":"54 1","pages":"11:1-11:26"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"Lightweight RFID authentication with forward and backward security\",\"authors\":\"M. Burmester, J. Munilla\",\"doi\":\"10.1145/1952982.1952993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a lightweight RFID authentication protocol that supports forward and backward security. The only cryptographic mechanism that this protocol uses is a pseudorandom number generator (PRNG) that is shared with the backend Server. Authentication is achieved by exchanging a few numbers (3 or 5) drawn from the PRNG. The lookup time is constant, and the protocol can be easily adapted to prevent online man-in-the-middle relay attacks. Security is proven in the UC security framework.\",\"PeriodicalId\":50912,\"journal\":{\"name\":\"ACM Transactions on Information and System Security\",\"volume\":\"54 1\",\"pages\":\"11:1-11:26\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Information and System Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1952982.1952993\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information and System Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1952982.1952993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Engineering","Score":null,"Total":0}
Lightweight RFID authentication with forward and backward security
We propose a lightweight RFID authentication protocol that supports forward and backward security. The only cryptographic mechanism that this protocol uses is a pseudorandom number generator (PRNG) that is shared with the backend Server. Authentication is achieved by exchanging a few numbers (3 or 5) drawn from the PRNG. The lookup time is constant, and the protocol can be easily adapted to prevent online man-in-the-middle relay attacks. Security is proven in the UC security framework.
期刊介绍:
ISSEC is a scholarly, scientific journal that publishes original research papers in all areas of information and system security, including technologies, systems, applications, and policies.