洛伦兹和利普希兹相遇

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Christian Lange, A. Lytchak, Clemens Samann
{"title":"洛伦兹和利普希兹相遇","authors":"Christian Lange, A. Lytchak, Clemens Samann","doi":"10.4310/ATMP.2021.v25.n8.a4","DOIUrl":null,"url":null,"abstract":"We show that maximal causal curves for a Lipschitz continuous Lorentzian metric admit a $\\mathcal{C}^{1,1}$-parametrization and that they solve the geodesic equation in the sense of Filippov in this parametrization. Our proof shows that maximal causal curves are either everywhere lightlike or everywhere timelike. Furthermore, the proof demonstrates that maximal causal curves for an $\\alpha$-Holder continuous Lorentzian metric admit a $\\mathcal{C}^{1,\\frac{\\alpha}{4}}$-parametrization.","PeriodicalId":50848,"journal":{"name":"Advances in Theoretical and Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2020-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Lorentz Meets Lipschitz\",\"authors\":\"Christian Lange, A. Lytchak, Clemens Samann\",\"doi\":\"10.4310/ATMP.2021.v25.n8.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that maximal causal curves for a Lipschitz continuous Lorentzian metric admit a $\\\\mathcal{C}^{1,1}$-parametrization and that they solve the geodesic equation in the sense of Filippov in this parametrization. Our proof shows that maximal causal curves are either everywhere lightlike or everywhere timelike. Furthermore, the proof demonstrates that maximal causal curves for an $\\\\alpha$-Holder continuous Lorentzian metric admit a $\\\\mathcal{C}^{1,\\\\frac{\\\\alpha}{4}}$-parametrization.\",\"PeriodicalId\":50848,\"journal\":{\"name\":\"Advances in Theoretical and Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.4310/ATMP.2021.v25.n8.a4\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.4310/ATMP.2021.v25.n8.a4","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 9

摘要

我们证明了Lipschitz连续洛伦兹度规的最大因果曲线允许$\mathcal{C}^{1,1}$ -参数化,并在该参数化中解出了Filippov意义上的测地方程。我们的证明表明,最大因果曲线要么处处是类光曲线,要么处处是类时曲线。进一步证明了$\alpha$ -Holder连续洛伦兹度量的最大因果曲线允许$\mathcal{C}^{1,\frac{\alpha}{4}}$ -参数化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lorentz Meets Lipschitz
We show that maximal causal curves for a Lipschitz continuous Lorentzian metric admit a $\mathcal{C}^{1,1}$-parametrization and that they solve the geodesic equation in the sense of Filippov in this parametrization. Our proof shows that maximal causal curves are either everywhere lightlike or everywhere timelike. Furthermore, the proof demonstrates that maximal causal curves for an $\alpha$-Holder continuous Lorentzian metric admit a $\mathcal{C}^{1,\frac{\alpha}{4}}$-parametrization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Theoretical and Mathematical Physics
Advances in Theoretical and Mathematical Physics 物理-物理:粒子与场物理
CiteScore
2.20
自引率
6.70%
发文量
0
审稿时长
>12 weeks
期刊介绍: Advances in Theoretical and Mathematical Physics is a bimonthly publication of the International Press, publishing papers on all areas in which theoretical physics and mathematics interact with each other.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信