类apsamry数的渐近对数凸性

IF 1.1 4区 数学 Q2 MATHEMATICS, APPLIED
Jianxi Mao, Yanni Pei
{"title":"类apsamry数的渐近对数凸性","authors":"Jianxi Mao, Yanni Pei","doi":"10.1080/10236198.2023.2255308","DOIUrl":null,"url":null,"abstract":"We present sufficient conditions for the asymptotic log-convexity of Apéry-like numbers which satisfy three-term recursions. Our techniques are based on the famous Birkhoff–Adams theorem.","PeriodicalId":15616,"journal":{"name":"Journal of Difference Equations and Applications","volume":"106 1","pages":"799 - 813"},"PeriodicalIF":1.1000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The asymptotic log-convexity of Apéry-like numbers\",\"authors\":\"Jianxi Mao, Yanni Pei\",\"doi\":\"10.1080/10236198.2023.2255308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present sufficient conditions for the asymptotic log-convexity of Apéry-like numbers which satisfy three-term recursions. Our techniques are based on the famous Birkhoff–Adams theorem.\",\"PeriodicalId\":15616,\"journal\":{\"name\":\"Journal of Difference Equations and Applications\",\"volume\":\"106 1\",\"pages\":\"799 - 813\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Difference Equations and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/10236198.2023.2255308\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Difference Equations and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/10236198.2023.2255308","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

给出了一类满足三项递推的apsamry -like数的渐近对数凸性的充分条件。我们的技术是基于著名的伯克霍夫-亚当斯定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The asymptotic log-convexity of Apéry-like numbers
We present sufficient conditions for the asymptotic log-convexity of Apéry-like numbers which satisfy three-term recursions. Our techniques are based on the famous Birkhoff–Adams theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
9.10%
发文量
70
审稿时长
4-8 weeks
期刊介绍: Journal of Difference Equations and Applications presents state-of-the-art papers on difference equations and discrete dynamical systems and the academic, pure and applied problems in which they arise. The Journal is composed of original research, expository and review articles, and papers that present novel concepts in application and techniques. The scope of the Journal includes all areas in mathematics that contain significant theory or applications in difference equations or discrete dynamical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信