具有偏度的最优套期保值比率模型

Long-bin ZHANG, Chun-feng WANG, Zhen-ming FANG
{"title":"具有偏度的最优套期保值比率模型","authors":"Long-bin ZHANG,&nbsp;Chun-feng WANG,&nbsp;Zhen-ming FANG","doi":"10.1016/S1874-8651(10)60067-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we develop an optimal hedging ratio model with skewness and derive the analytical solution of the optimal hedging ratio which can degenerate to mean-variance hedging ratio when co-skewnesses of spot and futures returns become zero. The empirical results suggest that the hedging model with skewness performs better than the traditional mean-variance hedging model.</p></div>","PeriodicalId":101206,"journal":{"name":"Systems Engineering - Theory & Practice","volume":"29 9","pages":"Pages 1-6"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1874-8651(10)60067-1","citationCount":"2","resultStr":"{\"title\":\"Optimal Hedging Ratio Model with Skewness\",\"authors\":\"Long-bin ZHANG,&nbsp;Chun-feng WANG,&nbsp;Zhen-ming FANG\",\"doi\":\"10.1016/S1874-8651(10)60067-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article, we develop an optimal hedging ratio model with skewness and derive the analytical solution of the optimal hedging ratio which can degenerate to mean-variance hedging ratio when co-skewnesses of spot and futures returns become zero. The empirical results suggest that the hedging model with skewness performs better than the traditional mean-variance hedging model.</p></div>\",\"PeriodicalId\":101206,\"journal\":{\"name\":\"Systems Engineering - Theory & Practice\",\"volume\":\"29 9\",\"pages\":\"Pages 1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1874-8651(10)60067-1\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems Engineering - Theory & Practice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1874865110600671\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Engineering - Theory & Practice","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874865110600671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文建立了一个具有偏度的最优套期保值比率模型,并推导出了当现货和期货收益的共偏度为零时,最优套期保值比率退化为均值-方差套期保值比率的解析解。实证结果表明,具有偏度的套期保值模型比传统的均值-方差套期保值模型效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Hedging Ratio Model with Skewness

In this article, we develop an optimal hedging ratio model with skewness and derive the analytical solution of the optimal hedging ratio which can degenerate to mean-variance hedging ratio when co-skewnesses of spot and futures returns become zero. The empirical results suggest that the hedging model with skewness performs better than the traditional mean-variance hedging model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信