弱透镜收敛单点概率分布函数及其自协方差的精确解析模型

L. Thiele, J. Hill, Kendrick M. Smith
{"title":"弱透镜收敛单点概率分布函数及其自协方差的精确解析模型","authors":"L. Thiele, J. Hill, Kendrick M. Smith","doi":"10.1103/physrevd.102.123545","DOIUrl":null,"url":null,"abstract":"The one-point probability distribution function (PDF) is a powerful summary statistic for non-Gaussian cosmological fields, such as the weak lensing (WL) convergence reconstructed from galaxy shapes or cosmic microwave background maps. Thus far, no analytic model has been developed that successfully describes the high-convergence tail of the WL convergence PDF for small smoothing scales from first principles. Here, we present a halo-model formalism to compute the WL convergence PDF, building upon our previous results for the thermal Sunyaev-Zel'dovich field. Furthermore, we extend our formalism to analytically compute the covariance matrix of the convergence PDF. Comparisons to numerical simulations generally confirm the validity of our formalism in the non-Gaussian, positive tail of the WL convergence PDF, but also reveal the convergence PDF's strong sensitivity to small-scale systematic effects in the simulations (e.g., due to finite resolution). Finally, we present a simple Fisher forecast for a Rubin Observatory-like survey, based on our new analytic model. Considering the $\\{A_s, \\Omega_m, \\Sigma m_\\nu\\}$ parameter space and assuming a Planck CMB prior on $A_s$ only, we forecast a marginalized constraint $\\sigma(\\Sigma m_\\nu) \\approx 0.08$ eV from the WL convergence PDF alone, even after marginalizing over parameters describing the halo concentration-mass relation. This error bar on the neutrino mass sum is comparable to the minimum value allowed in the normal hierarchy, illustrating the strong constraining power of the WL convergence PDF. We make our code publicly available at this https URL.","PeriodicalId":8431,"journal":{"name":"arXiv: Cosmology and Nongalactic Astrophysics","volume":"34 4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Accurate analytic model for the weak lensing convergence one-point probability distribution function and its autocovariance\",\"authors\":\"L. Thiele, J. Hill, Kendrick M. Smith\",\"doi\":\"10.1103/physrevd.102.123545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The one-point probability distribution function (PDF) is a powerful summary statistic for non-Gaussian cosmological fields, such as the weak lensing (WL) convergence reconstructed from galaxy shapes or cosmic microwave background maps. Thus far, no analytic model has been developed that successfully describes the high-convergence tail of the WL convergence PDF for small smoothing scales from first principles. Here, we present a halo-model formalism to compute the WL convergence PDF, building upon our previous results for the thermal Sunyaev-Zel'dovich field. Furthermore, we extend our formalism to analytically compute the covariance matrix of the convergence PDF. Comparisons to numerical simulations generally confirm the validity of our formalism in the non-Gaussian, positive tail of the WL convergence PDF, but also reveal the convergence PDF's strong sensitivity to small-scale systematic effects in the simulations (e.g., due to finite resolution). Finally, we present a simple Fisher forecast for a Rubin Observatory-like survey, based on our new analytic model. Considering the $\\\\{A_s, \\\\Omega_m, \\\\Sigma m_\\\\nu\\\\}$ parameter space and assuming a Planck CMB prior on $A_s$ only, we forecast a marginalized constraint $\\\\sigma(\\\\Sigma m_\\\\nu) \\\\approx 0.08$ eV from the WL convergence PDF alone, even after marginalizing over parameters describing the halo concentration-mass relation. This error bar on the neutrino mass sum is comparable to the minimum value allowed in the normal hierarchy, illustrating the strong constraining power of the WL convergence PDF. We make our code publicly available at this https URL.\",\"PeriodicalId\":8431,\"journal\":{\"name\":\"arXiv: Cosmology and Nongalactic Astrophysics\",\"volume\":\"34 4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Cosmology and Nongalactic Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.102.123545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Cosmology and Nongalactic Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevd.102.123545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

单点概率分布函数(PDF)是非高斯宇宙学场的一个强大的汇总统计量,例如从星系形状或宇宙微波背景图重建的弱透镜(WL)收敛。到目前为止,还没有一个解析模型能够从第一性原理上成功地描述小平滑尺度下WL收敛PDF的高收敛尾。在这里,我们提出了一个晕形模型的形式来计算WL收敛PDF,建立在我们之前的热Sunyaev-Zel'dovich场的结果之上。进一步,我们扩展了我们的形式来解析计算收敛性的协方差矩阵。与数值模拟的比较一般证实了我们的形式在WL收敛PDF的非高斯正尾中的有效性,但也揭示了收敛PDF对模拟中的小尺度系统效应的强敏感性(例如,由于有限分辨率)。最后,基于我们的新分析模型,我们提出了一个简单的Fisher预测,预测类似鲁宾天文台的巡天。考虑$\{A_s, \Omega_m, \Sigma m_\nu\}$参数空间并假设仅在$A_s$上有普朗克CMB先验,我们仅从WL收敛PDF中预测了一个边缘约束$\sigma(\Sigma m_\nu) \approx 0.08$ eV,即使在对描述光晕浓度-质量关系的参数进行边缘化之后也是如此。中微子质量和的误差条与正常层次中允许的最小值相当,说明WL收敛PDF具有很强的约束能力。我们在这个https URL上公开提供我们的代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accurate analytic model for the weak lensing convergence one-point probability distribution function and its autocovariance
The one-point probability distribution function (PDF) is a powerful summary statistic for non-Gaussian cosmological fields, such as the weak lensing (WL) convergence reconstructed from galaxy shapes or cosmic microwave background maps. Thus far, no analytic model has been developed that successfully describes the high-convergence tail of the WL convergence PDF for small smoothing scales from first principles. Here, we present a halo-model formalism to compute the WL convergence PDF, building upon our previous results for the thermal Sunyaev-Zel'dovich field. Furthermore, we extend our formalism to analytically compute the covariance matrix of the convergence PDF. Comparisons to numerical simulations generally confirm the validity of our formalism in the non-Gaussian, positive tail of the WL convergence PDF, but also reveal the convergence PDF's strong sensitivity to small-scale systematic effects in the simulations (e.g., due to finite resolution). Finally, we present a simple Fisher forecast for a Rubin Observatory-like survey, based on our new analytic model. Considering the $\{A_s, \Omega_m, \Sigma m_\nu\}$ parameter space and assuming a Planck CMB prior on $A_s$ only, we forecast a marginalized constraint $\sigma(\Sigma m_\nu) \approx 0.08$ eV from the WL convergence PDF alone, even after marginalizing over parameters describing the halo concentration-mass relation. This error bar on the neutrino mass sum is comparable to the minimum value allowed in the normal hierarchy, illustrating the strong constraining power of the WL convergence PDF. We make our code publicly available at this https URL.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信