线性各向异性微分算子的二阶单调有限差分离散化

J. Bonnans, G. Bonnet, J. Mirebeau
{"title":"线性各向异性微分算子的二阶单调有限差分离散化","authors":"J. Bonnans, G. Bonnet, J. Mirebeau","doi":"10.1090/mcom/3671","DOIUrl":null,"url":null,"abstract":"We design adaptive finite differences discretizations, which are degenerate elliptic and second order consistent, of linear and quasi-linear partial differential operators featuring both a first order term and an anisotropic second order term. Our approach requires the domain to be discretized on a Cartesian grid, and takes advantage of techniques from the field of low-dimensional lattice geometry. We prove that the stencil of our numerical scheme is optimally compact, in dimension two, and that our approach is quasi-optimal in terms of the compatibility condition required of the first and second order operators, in dimensions two and three. Numerical experiments illustrate the efficiency of our method in several contexts.","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"52 1","pages":"2671-2703"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Second order monotone finite differences discretization of linear anisotropic differential operators\",\"authors\":\"J. Bonnans, G. Bonnet, J. Mirebeau\",\"doi\":\"10.1090/mcom/3671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We design adaptive finite differences discretizations, which are degenerate elliptic and second order consistent, of linear and quasi-linear partial differential operators featuring both a first order term and an anisotropic second order term. Our approach requires the domain to be discretized on a Cartesian grid, and takes advantage of techniques from the field of low-dimensional lattice geometry. We prove that the stencil of our numerical scheme is optimally compact, in dimension two, and that our approach is quasi-optimal in terms of the compatibility condition required of the first and second order operators, in dimensions two and three. Numerical experiments illustrate the efficiency of our method in several contexts.\",\"PeriodicalId\":18301,\"journal\":{\"name\":\"Math. Comput. Model.\",\"volume\":\"52 1\",\"pages\":\"2671-2703\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Math. Comput. Model.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3671\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math. Comput. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们设计了具有一阶项和各向异性二阶项的线性和拟线性偏微分算子的自适应有限差分离散化,该离散化是退化椭圆型和二阶一致性的。我们的方法需要在笛卡尔网格上离散域,并利用了低维晶格几何领域的技术。我们证明了我们的数值格式模板在二维上是最优紧凑的,并且在二维和三维上,我们的方法在一阶和二阶算子的相容条件下是拟最优的。数值实验证明了该方法在多种情况下的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Second order monotone finite differences discretization of linear anisotropic differential operators
We design adaptive finite differences discretizations, which are degenerate elliptic and second order consistent, of linear and quasi-linear partial differential operators featuring both a first order term and an anisotropic second order term. Our approach requires the domain to be discretized on a Cartesian grid, and takes advantage of techniques from the field of low-dimensional lattice geometry. We prove that the stencil of our numerical scheme is optimally compact, in dimension two, and that our approach is quasi-optimal in terms of the compatibility condition required of the first and second order operators, in dimensions two and three. Numerical experiments illustrate the efficiency of our method in several contexts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信