Coulibaly Bamoro, Fante Bamba, Koffi Téki Dindet Steve-Evanes, A. Vallin, V. Chagnault
{"title":"4,5-二苯基- 1h -咪唑衍生物的设计、合成及抗菌活性评价","authors":"Coulibaly Bamoro, Fante Bamba, Koffi Téki Dindet Steve-Evanes, A. Vallin, V. Chagnault","doi":"10.4236/ojmc.2021.112002","DOIUrl":null,"url":null,"abstract":"Due to the continuous emergence and rapid spread of drug-resistant strains of bacteria, there is an urgent need for the development of novel antimicrobials. Along this line, the synthesis and antibacterial activity of 4,5-diphenylimidazol-2-thiol derivatives 2a-g and 6a-e are reported. The structures of the synthesized compounds were confirmed by Nuclear Magnetic Resonance (NMR) and High Resolution Mass Spectrometry (HRMS). All compounds were screened in vitro for their antibacterial activity against Pseudomonas aeruginosa and Escherichia coli (Gram-negative bacteria) and also against Staphyloccocus aureus and Enterococcus faecalis (Gram-positive bacteria). The results showed most of the synthesized compounds have no antibacterial activity. However compound 6d was two-fold potent than ciprofloxacin against Staphylococcus aureus with Minimum Inhibitory Concentration (MIC) of 4 μg/mL and 6c showed moderate biological activity against Staphylococcus aureus (16 μg/mL) and Enterococcus faecalis (16 μg/mL).","PeriodicalId":68630,"journal":{"name":"药物化学期刊(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design, Synthesis and Antibacterial Activity Evaluation of 4,5-Diphenyl-1H-Imidazoles Derivatives\",\"authors\":\"Coulibaly Bamoro, Fante Bamba, Koffi Téki Dindet Steve-Evanes, A. Vallin, V. Chagnault\",\"doi\":\"10.4236/ojmc.2021.112002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the continuous emergence and rapid spread of drug-resistant strains of bacteria, there is an urgent need for the development of novel antimicrobials. Along this line, the synthesis and antibacterial activity of 4,5-diphenylimidazol-2-thiol derivatives 2a-g and 6a-e are reported. The structures of the synthesized compounds were confirmed by Nuclear Magnetic Resonance (NMR) and High Resolution Mass Spectrometry (HRMS). All compounds were screened in vitro for their antibacterial activity against Pseudomonas aeruginosa and Escherichia coli (Gram-negative bacteria) and also against Staphyloccocus aureus and Enterococcus faecalis (Gram-positive bacteria). The results showed most of the synthesized compounds have no antibacterial activity. However compound 6d was two-fold potent than ciprofloxacin against Staphylococcus aureus with Minimum Inhibitory Concentration (MIC) of 4 μg/mL and 6c showed moderate biological activity against Staphylococcus aureus (16 μg/mL) and Enterococcus faecalis (16 μg/mL).\",\"PeriodicalId\":68630,\"journal\":{\"name\":\"药物化学期刊(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"药物化学期刊(英文)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/ojmc.2021.112002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"药物化学期刊(英文)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/ojmc.2021.112002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design, Synthesis and Antibacterial Activity Evaluation of 4,5-Diphenyl-1H-Imidazoles Derivatives
Due to the continuous emergence and rapid spread of drug-resistant strains of bacteria, there is an urgent need for the development of novel antimicrobials. Along this line, the synthesis and antibacterial activity of 4,5-diphenylimidazol-2-thiol derivatives 2a-g and 6a-e are reported. The structures of the synthesized compounds were confirmed by Nuclear Magnetic Resonance (NMR) and High Resolution Mass Spectrometry (HRMS). All compounds were screened in vitro for their antibacterial activity against Pseudomonas aeruginosa and Escherichia coli (Gram-negative bacteria) and also against Staphyloccocus aureus and Enterococcus faecalis (Gram-positive bacteria). The results showed most of the synthesized compounds have no antibacterial activity. However compound 6d was two-fold potent than ciprofloxacin against Staphylococcus aureus with Minimum Inhibitory Concentration (MIC) of 4 μg/mL and 6c showed moderate biological activity against Staphylococcus aureus (16 μg/mL) and Enterococcus faecalis (16 μg/mL).