利用DT和VAR优化物联网物理位置监控

IF 0.6 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
A. S. Shitole, M. Devare
{"title":"利用DT和VAR优化物联网物理位置监控","authors":"A. S. Shitole, M. Devare","doi":"10.4018/IJCINI.287597","DOIUrl":null,"url":null,"abstract":"This study shows an enhancement of IoT which gets sensor data and performs real-time face recognition to screen physical areas to find strange situations and send an alarm mail to the client to make remedial moves to avoid any potential misfortune in the environment. Sensor data is pushed onto the local system and GoDaddy Cloud, whenever the camera detects a person to optimize the Physical Location Monitoring System by reducing the bandwidth requirement and storage cost onto the Cloud using edge computation. The study reveals that Decision Tree (DT) and Random Forest give reasonably similar macro average f1-score to predict a person using sensor data. Experimental results show that DT is the most reliable predictive model for the Cloud datasets of three different physical locations to predict a person using timestamp with an accuracy of 83.99%, 88.92%, and 80.97%. This study also explains multivariate time series prediction using Vector Auto Regression that gives reasonably good Root Mean Squared Error to predict Temperature, Humidity, Light Dependent Resistor, and Gas time series.","PeriodicalId":43637,"journal":{"name":"International Journal of Cognitive Informatics and Natural Intelligence","volume":"26 1","pages":"1-28"},"PeriodicalIF":0.6000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Optimization of IoT-Enabled Physical Location Monitoring Using DT and VAR\",\"authors\":\"A. S. Shitole, M. Devare\",\"doi\":\"10.4018/IJCINI.287597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study shows an enhancement of IoT which gets sensor data and performs real-time face recognition to screen physical areas to find strange situations and send an alarm mail to the client to make remedial moves to avoid any potential misfortune in the environment. Sensor data is pushed onto the local system and GoDaddy Cloud, whenever the camera detects a person to optimize the Physical Location Monitoring System by reducing the bandwidth requirement and storage cost onto the Cloud using edge computation. The study reveals that Decision Tree (DT) and Random Forest give reasonably similar macro average f1-score to predict a person using sensor data. Experimental results show that DT is the most reliable predictive model for the Cloud datasets of three different physical locations to predict a person using timestamp with an accuracy of 83.99%, 88.92%, and 80.97%. This study also explains multivariate time series prediction using Vector Auto Regression that gives reasonably good Root Mean Squared Error to predict Temperature, Humidity, Light Dependent Resistor, and Gas time series.\",\"PeriodicalId\":43637,\"journal\":{\"name\":\"International Journal of Cognitive Informatics and Natural Intelligence\",\"volume\":\"26 1\",\"pages\":\"1-28\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Cognitive Informatics and Natural Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJCINI.287597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cognitive Informatics and Natural Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJCINI.287597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 3

摘要

本研究展示了物联网的增强,它获得传感器数据并执行实时人脸识别,以筛选物理区域,发现奇怪的情况,并向客户发送警报邮件,以采取补救措施,以避免环境中任何潜在的不幸。每当摄像头检测到有人时,传感器数据就会被推送到本地系统和GoDaddy Cloud上,从而通过使用边缘计算减少带宽需求和云存储成本来优化物理位置监控系统。研究表明,决策树(DT)和随机森林给出了相当相似的宏观平均f1分来预测使用传感器数据的人。实验结果表明,DT是三种不同物理位置的Cloud数据集使用时间戳预测人的最可靠的预测模型,准确率分别为83.99%、88.92%和80.97%。本研究还解释了使用向量自回归的多变量时间序列预测,该预测给出了相当好的均方根误差来预测温度,湿度,光相关电阻和气体时间序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of IoT-Enabled Physical Location Monitoring Using DT and VAR
This study shows an enhancement of IoT which gets sensor data and performs real-time face recognition to screen physical areas to find strange situations and send an alarm mail to the client to make remedial moves to avoid any potential misfortune in the environment. Sensor data is pushed onto the local system and GoDaddy Cloud, whenever the camera detects a person to optimize the Physical Location Monitoring System by reducing the bandwidth requirement and storage cost onto the Cloud using edge computation. The study reveals that Decision Tree (DT) and Random Forest give reasonably similar macro average f1-score to predict a person using sensor data. Experimental results show that DT is the most reliable predictive model for the Cloud datasets of three different physical locations to predict a person using timestamp with an accuracy of 83.99%, 88.92%, and 80.97%. This study also explains multivariate time series prediction using Vector Auto Regression that gives reasonably good Root Mean Squared Error to predict Temperature, Humidity, Light Dependent Resistor, and Gas time series.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
11.10%
发文量
16
期刊介绍: The International Journal of Cognitive Informatics and Natural Intelligence (IJCINI) encourages submissions that transcends disciplinary boundaries, and is devoted to rapid publication of high quality papers. The themes of IJCINI are natural intelligence, autonomic computing, and neuroinformatics. IJCINI is expected to provide the first forum and platform in the world for researchers, practitioners, and graduate students to investigate cognitive mechanisms and processes of human information processing, and to stimulate the transdisciplinary effort on cognitive informatics and natural intelligent research and engineering applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信