具有拓扑保护的持久约瑟夫森相滑存储器

N. Ligato, E. Strambini, F. Paolucci, F. Giazotto
{"title":"具有拓扑保护的持久约瑟夫森相滑存储器","authors":"N. Ligato, E. Strambini, F. Paolucci, F. Giazotto","doi":"10.21203/RS.3.RS-321169/V1","DOIUrl":null,"url":null,"abstract":"Superconducting computing promises enhanced computational power in both classical and quantum approaches. Yet, efficient schemes for scalable and fast superconducting memories are still missing. On the one hand, the large inductance required in magnetic flux-controlled Josephson memories impedes device miniaturization. On the other hand, the use of ferromagnetic order to store information often degrades superconductivity, and limits the operation speed to the magnetization switching rate of a few GHz. Here, we overcome the above limitations through a fully superconducting memory cell based on the topological transition driven by hysteretic phase slips existing in aluminum nanowire Josephson junctions. Our direct and non-destructive read-out scheme, based on local tunneling spectroscopy, ensures reduced dissipation ($\\lesssim 40$ fW) and estimated response time below $\\lesssim 30$ ps thereby yielding a maximum energy per bit consumption as low as $\\sim 10^{-24}$ J. In addition, the memory topological index can be directly read by robust phase measurements thus further lowering dissipation whilst maximizing the stability against magnetic noise. The memory, measured over several days, showed no evidence of information degradation up to $\\sim 1.1$ K, i.e., $\\sim 85\\%$ of the critical temperature of aluminum. The ease of operation combined with remarkable performance elects the Josephson phase-slip memory as an attractive storage cell to be exploited in advanced superconducting logic architectures.","PeriodicalId":8465,"journal":{"name":"arXiv: Mesoscale and Nanoscale Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Persistent Josephson Phase-Slip Memory with Topological Protection\",\"authors\":\"N. Ligato, E. Strambini, F. Paolucci, F. Giazotto\",\"doi\":\"10.21203/RS.3.RS-321169/V1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Superconducting computing promises enhanced computational power in both classical and quantum approaches. Yet, efficient schemes for scalable and fast superconducting memories are still missing. On the one hand, the large inductance required in magnetic flux-controlled Josephson memories impedes device miniaturization. On the other hand, the use of ferromagnetic order to store information often degrades superconductivity, and limits the operation speed to the magnetization switching rate of a few GHz. Here, we overcome the above limitations through a fully superconducting memory cell based on the topological transition driven by hysteretic phase slips existing in aluminum nanowire Josephson junctions. Our direct and non-destructive read-out scheme, based on local tunneling spectroscopy, ensures reduced dissipation ($\\\\lesssim 40$ fW) and estimated response time below $\\\\lesssim 30$ ps thereby yielding a maximum energy per bit consumption as low as $\\\\sim 10^{-24}$ J. In addition, the memory topological index can be directly read by robust phase measurements thus further lowering dissipation whilst maximizing the stability against magnetic noise. The memory, measured over several days, showed no evidence of information degradation up to $\\\\sim 1.1$ K, i.e., $\\\\sim 85\\\\%$ of the critical temperature of aluminum. The ease of operation combined with remarkable performance elects the Josephson phase-slip memory as an attractive storage cell to be exploited in advanced superconducting logic architectures.\",\"PeriodicalId\":8465,\"journal\":{\"name\":\"arXiv: Mesoscale and Nanoscale Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mesoscale and Nanoscale Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21203/RS.3.RS-321169/V1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mesoscale and Nanoscale Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/RS.3.RS-321169/V1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

超导计算有望在经典和量子方法中增强计算能力。然而,可扩展和快速超导存储器的有效方案仍然缺失。一方面,磁通量控制约瑟夫森存储器所需的大电感阻碍了器件的小型化。另一方面,使用铁磁序来存储信息往往会降低超导性,并将操作速度限制在几GHz的磁化开关速率。在这里,我们通过基于铝纳米线Josephson结中存在的滞后相滑移驱动的拓扑转变的完全超导存储电池克服了上述限制。我们的直接和非破坏性读出方案,基于局部隧道光谱,确保降低耗散($\lesssim 40$ fW)和估计响应时间低于$\lesssim 30$ ps,从而产生的最大能量每比特消耗低至$\sim 10^{-24}$ J.此外,存储器拓扑指数可以通过稳健的相位测量直接读取,从而进一步降低耗散,同时最大限度地提高抗磁噪声的稳定性。经过几天的测量,记忆在$\sim 1.1$ K(即$\sim 85\%$铝的临界温度)以下没有显示出信息退化的证据。易于操作和卓越的性能使Josephson相滑存储器成为一种有吸引力的存储单元,可用于先进的超导逻辑架构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Persistent Josephson Phase-Slip Memory with Topological Protection
Superconducting computing promises enhanced computational power in both classical and quantum approaches. Yet, efficient schemes for scalable and fast superconducting memories are still missing. On the one hand, the large inductance required in magnetic flux-controlled Josephson memories impedes device miniaturization. On the other hand, the use of ferromagnetic order to store information often degrades superconductivity, and limits the operation speed to the magnetization switching rate of a few GHz. Here, we overcome the above limitations through a fully superconducting memory cell based on the topological transition driven by hysteretic phase slips existing in aluminum nanowire Josephson junctions. Our direct and non-destructive read-out scheme, based on local tunneling spectroscopy, ensures reduced dissipation ($\lesssim 40$ fW) and estimated response time below $\lesssim 30$ ps thereby yielding a maximum energy per bit consumption as low as $\sim 10^{-24}$ J. In addition, the memory topological index can be directly read by robust phase measurements thus further lowering dissipation whilst maximizing the stability against magnetic noise. The memory, measured over several days, showed no evidence of information degradation up to $\sim 1.1$ K, i.e., $\sim 85\%$ of the critical temperature of aluminum. The ease of operation combined with remarkable performance elects the Josephson phase-slip memory as an attractive storage cell to be exploited in advanced superconducting logic architectures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信