抛物型方程的加权差分格式及计算

Yunhui Li, Kun Ge, B. Gui, Min-li Yan
{"title":"抛物型方程的加权差分格式及计算","authors":"Yunhui Li, Kun Ge, B. Gui, Min-li Yan","doi":"10.1109/ICIC.2011.33","DOIUrl":null,"url":null,"abstract":"In practical simulations, difference algorithms are often chosen to solve large partial differential equations. In this paper, a new weighted three-implicit difference scheme is constructed for one-dimensional parabolic equation. The truncation error and stability of difference scheme are studied in detail. Numerical results show that the new method is feasible and effective, indeed.","PeriodicalId":6397,"journal":{"name":"2011 Fourth International Conference on Information and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Weighted Difference Scheme and Calculation of Parabolic Equation\",\"authors\":\"Yunhui Li, Kun Ge, B. Gui, Min-li Yan\",\"doi\":\"10.1109/ICIC.2011.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In practical simulations, difference algorithms are often chosen to solve large partial differential equations. In this paper, a new weighted three-implicit difference scheme is constructed for one-dimensional parabolic equation. The truncation error and stability of difference scheme are studied in detail. Numerical results show that the new method is feasible and effective, indeed.\",\"PeriodicalId\":6397,\"journal\":{\"name\":\"2011 Fourth International Conference on Information and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Fourth International Conference on Information and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIC.2011.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Conference on Information and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIC.2011.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在实际模拟中,差分算法经常被用来求解大型偏微分方程。本文构造了一维抛物型方程的一种新的加权三隐差分格式。详细研究了差分格式的截断误差和稳定性。数值结果表明,该方法是可行和有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Weighted Difference Scheme and Calculation of Parabolic Equation
In practical simulations, difference algorithms are often chosen to solve large partial differential equations. In this paper, a new weighted three-implicit difference scheme is constructed for one-dimensional parabolic equation. The truncation error and stability of difference scheme are studied in detail. Numerical results show that the new method is feasible and effective, indeed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信