个性化和聚合Top-N推荐列表对用户偏好评级的影响

G. Adomavicius, J. Bockstedt, S. Curley, Jingjing Zhang
{"title":"个性化和聚合Top-N推荐列表对用户偏好评级的影响","authors":"G. Adomavicius, J. Bockstedt, S. Curley, Jingjing Zhang","doi":"10.1145/3430028","DOIUrl":null,"url":null,"abstract":"Prior research has shown a robust effect of personalized product recommendations on user preference judgments for items. Specifically, the display of system-predicted preference ratings as item recommendations has been shown in multiple studies to bias users’ preference ratings after item consumption in the direction of the predicted rating. Top-N lists represent another common approach for presenting item recommendations in recommender systems. Through three controlled laboratory experiments, we show that top-N lists do not induce a discernible bias in user preference judgments. This result is robust, holding for both lists of personalized item recommendations and lists of items that are top-rated based on averages of aggregate user ratings. Adding numerical ratings to the list items does generate a bias, consistent with earlier studies. Thus, in contexts where preference biases are of concern to an online retailer or platform, top-N lists, without numerical predicted ratings, would be a promising format for displaying item recommendations.","PeriodicalId":6934,"journal":{"name":"ACM Transactions on Information Systems (TOIS)","volume":"19 1","pages":"1 - 38"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Effects of Personalized and Aggregate Top-N Recommendation Lists on User Preference Ratings\",\"authors\":\"G. Adomavicius, J. Bockstedt, S. Curley, Jingjing Zhang\",\"doi\":\"10.1145/3430028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prior research has shown a robust effect of personalized product recommendations on user preference judgments for items. Specifically, the display of system-predicted preference ratings as item recommendations has been shown in multiple studies to bias users’ preference ratings after item consumption in the direction of the predicted rating. Top-N lists represent another common approach for presenting item recommendations in recommender systems. Through three controlled laboratory experiments, we show that top-N lists do not induce a discernible bias in user preference judgments. This result is robust, holding for both lists of personalized item recommendations and lists of items that are top-rated based on averages of aggregate user ratings. Adding numerical ratings to the list items does generate a bias, consistent with earlier studies. Thus, in contexts where preference biases are of concern to an online retailer or platform, top-N lists, without numerical predicted ratings, would be a promising format for displaying item recommendations.\",\"PeriodicalId\":6934,\"journal\":{\"name\":\"ACM Transactions on Information Systems (TOIS)\",\"volume\":\"19 1\",\"pages\":\"1 - 38\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Information Systems (TOIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3430028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information Systems (TOIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3430028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

先前的研究表明,个性化的产品推荐对用户的偏好判断有很强的影响。具体来说,在多个研究中显示,系统预测的偏好评级作为项目推荐的显示,会使用户在项目消费后的偏好评级朝着预测评级的方向倾斜。Top-N列表是在推荐系统中显示项目推荐的另一种常见方法。通过三个受控的实验室实验,我们表明top-N列表不会在用户偏好判断中引起明显的偏见。该结果是稳健的,既适用于个性化项目推荐列表,也适用于基于总用户评级平均值的最高评级项目列表。在列表项目中添加数字评级确实会产生偏见,这与早期的研究一致。因此,在在线零售商或平台关注偏好偏差的上下文中,没有数字预测评级的top-N列表将是显示商品推荐的一种很有前途的格式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of Personalized and Aggregate Top-N Recommendation Lists on User Preference Ratings
Prior research has shown a robust effect of personalized product recommendations on user preference judgments for items. Specifically, the display of system-predicted preference ratings as item recommendations has been shown in multiple studies to bias users’ preference ratings after item consumption in the direction of the predicted rating. Top-N lists represent another common approach for presenting item recommendations in recommender systems. Through three controlled laboratory experiments, we show that top-N lists do not induce a discernible bias in user preference judgments. This result is robust, holding for both lists of personalized item recommendations and lists of items that are top-rated based on averages of aggregate user ratings. Adding numerical ratings to the list items does generate a bias, consistent with earlier studies. Thus, in contexts where preference biases are of concern to an online retailer or platform, top-N lists, without numerical predicted ratings, would be a promising format for displaying item recommendations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信