L A Smyth, L Meader, F Xiao, M Woodward, H J M Brady, R Lechler, G Lombardi
{"title":"抗凋亡Bcl-2家族成员A1在小鼠内皮细胞中的组成性表达导致移植耐受。","authors":"L A Smyth, L Meader, F Xiao, M Woodward, H J M Brady, R Lechler, G Lombardi","doi":"10.1111/cei.12931","DOIUrl":null,"url":null,"abstract":"<p><p>Anti-apoptotic genes, including those of the Bcl-2 family, have been shown to have dual functionality inasmuch as they inhibit cell death but also regulate inflammation. Several anti-apoptotic molecules have been associated with endothelial cell (EC) survival following transplantation; however, their exact role has yet to be elucidated in respect to controlling inflammation. In this study we created mice expressing murine A1 (Bfl-1), a Bcl-2 family member, under the control of the human intercellular adhesion molecule 2 (ICAM-2) promoter. Constitutive expression of A1 in murine vascular ECs conferred protection from cell death induced by the proinflammatory cytokine tumour necrosis factor (TNF)-α. Importantly, in a mouse model of heart allograft transplantation, expression of A1 in vascular endothelium increased survival in the absence of CD8<sup>+</sup> T cells. Better graft outcome in mice receiving an A1 transgenic heart correlated with a reduced immune infiltration, which may be related to increased EC survival and reduced expression of adhesion molecules on ECs. In conclusion, constitutive expression of the anti-apoptotic molecule Bfl1 (A1) in murine vascular ECs leads to prolonged allograft survival due to modifying inflammation.</p>","PeriodicalId":10179,"journal":{"name":"Clinical & Experimental Immunology","volume":"273 1","pages":"219-225"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5383447/pdf/","citationCount":"0","resultStr":"{\"title\":\"Constitutive expression of the anti-apoptotic Bcl-2 family member A1 in murine endothelial cells leads to transplant tolerance.\",\"authors\":\"L A Smyth, L Meader, F Xiao, M Woodward, H J M Brady, R Lechler, G Lombardi\",\"doi\":\"10.1111/cei.12931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Anti-apoptotic genes, including those of the Bcl-2 family, have been shown to have dual functionality inasmuch as they inhibit cell death but also regulate inflammation. Several anti-apoptotic molecules have been associated with endothelial cell (EC) survival following transplantation; however, their exact role has yet to be elucidated in respect to controlling inflammation. In this study we created mice expressing murine A1 (Bfl-1), a Bcl-2 family member, under the control of the human intercellular adhesion molecule 2 (ICAM-2) promoter. Constitutive expression of A1 in murine vascular ECs conferred protection from cell death induced by the proinflammatory cytokine tumour necrosis factor (TNF)-α. Importantly, in a mouse model of heart allograft transplantation, expression of A1 in vascular endothelium increased survival in the absence of CD8<sup>+</sup> T cells. Better graft outcome in mice receiving an A1 transgenic heart correlated with a reduced immune infiltration, which may be related to increased EC survival and reduced expression of adhesion molecules on ECs. In conclusion, constitutive expression of the anti-apoptotic molecule Bfl1 (A1) in murine vascular ECs leads to prolonged allograft survival due to modifying inflammation.</p>\",\"PeriodicalId\":10179,\"journal\":{\"name\":\"Clinical & Experimental Immunology\",\"volume\":\"273 1\",\"pages\":\"219-225\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5383447/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical & Experimental Immunology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/cei.12931\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/3/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical & Experimental Immunology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/cei.12931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/3/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Constitutive expression of the anti-apoptotic Bcl-2 family member A1 in murine endothelial cells leads to transplant tolerance.
Anti-apoptotic genes, including those of the Bcl-2 family, have been shown to have dual functionality inasmuch as they inhibit cell death but also regulate inflammation. Several anti-apoptotic molecules have been associated with endothelial cell (EC) survival following transplantation; however, their exact role has yet to be elucidated in respect to controlling inflammation. In this study we created mice expressing murine A1 (Bfl-1), a Bcl-2 family member, under the control of the human intercellular adhesion molecule 2 (ICAM-2) promoter. Constitutive expression of A1 in murine vascular ECs conferred protection from cell death induced by the proinflammatory cytokine tumour necrosis factor (TNF)-α. Importantly, in a mouse model of heart allograft transplantation, expression of A1 in vascular endothelium increased survival in the absence of CD8+ T cells. Better graft outcome in mice receiving an A1 transgenic heart correlated with a reduced immune infiltration, which may be related to increased EC survival and reduced expression of adhesion molecules on ECs. In conclusion, constitutive expression of the anti-apoptotic molecule Bfl1 (A1) in murine vascular ECs leads to prolonged allograft survival due to modifying inflammation.