关于VDB图矩阵的谱半径

I. Gutman
{"title":"关于VDB图矩阵的谱半径","authors":"I. Gutman","doi":"10.5937/vojtehg71-41411","DOIUrl":null,"url":null,"abstract":"Introduction/purpose: Vertex-degree-based (VDB) graph matrices form a special class of matrices, corresponding to the currently much investigated vertex-degree-based (VDB) graph invariants. Some spectral properties of these matrices are investigated. Results: Generally valid sharp lower and upper bounds are established for the spectral radius of any VDB matrix. The equality cases are characterized. Several earlier published results are shown to be special cases of the presently reported bounds. Conclusion: The results of the paper contribute to the general spectral theory of VDB matrices, as well as to the general theory of VDB graph invariants.","PeriodicalId":30576,"journal":{"name":"Vojnotehnicki Glasnik","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the spectral radius of VDB graph matrices\",\"authors\":\"I. Gutman\",\"doi\":\"10.5937/vojtehg71-41411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction/purpose: Vertex-degree-based (VDB) graph matrices form a special class of matrices, corresponding to the currently much investigated vertex-degree-based (VDB) graph invariants. Some spectral properties of these matrices are investigated. Results: Generally valid sharp lower and upper bounds are established for the spectral radius of any VDB matrix. The equality cases are characterized. Several earlier published results are shown to be special cases of the presently reported bounds. Conclusion: The results of the paper contribute to the general spectral theory of VDB matrices, as well as to the general theory of VDB graph invariants.\",\"PeriodicalId\":30576,\"journal\":{\"name\":\"Vojnotehnicki Glasnik\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vojnotehnicki Glasnik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5937/vojtehg71-41411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vojnotehnicki Glasnik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5937/vojtehg71-41411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

基于顶点度(VDB)的图矩阵形成了一类特殊的矩阵,对应于当前研究较多的基于顶点度(VDB)的图不变量。研究了这些矩阵的一些谱性质。结果:对于任意VDB矩阵的谱半径,建立了普遍有效的清晰的上下边界。对等式情况进行了表征。一些先前发表的结果被证明是目前报道的边界的特殊情况。结论:本文的结果有助于VDB矩阵的一般谱理论,以及VDB图不变量的一般理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the spectral radius of VDB graph matrices
Introduction/purpose: Vertex-degree-based (VDB) graph matrices form a special class of matrices, corresponding to the currently much investigated vertex-degree-based (VDB) graph invariants. Some spectral properties of these matrices are investigated. Results: Generally valid sharp lower and upper bounds are established for the spectral radius of any VDB matrix. The equality cases are characterized. Several earlier published results are shown to be special cases of the presently reported bounds. Conclusion: The results of the paper contribute to the general spectral theory of VDB matrices, as well as to the general theory of VDB graph invariants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
24
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信