{"title":"一种基于mlcp的紧凑投影递归神经网络模型求解最短路径问题","authors":"Mohammad Eshaghnezhad, S. Effati, A. Mansoori","doi":"10.1080/0952813X.2022.2067247","DOIUrl":null,"url":null,"abstract":"ABSTRACT We develop a projection recurrent neural network (RNN) to obtain the solution of the shortest path problem (SPP). Our focus on the paper is to give a compact single-layer structure RNN model to solve the SPP. To present the RNN model, we utilise a mixed linear complementarity problem (MLCP). Moreover, the developed RNN is proved to be globally stable. Finally, some numerical simulations are stated to show the performance of the presented approach. We compare the results with some other methods.","PeriodicalId":15677,"journal":{"name":"Journal of Experimental & Theoretical Artificial Intelligence","volume":"18 1","pages":"1101 - 1119"},"PeriodicalIF":1.7000,"publicationDate":"2022-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A compact MLCP-based projection recurrent neural network model to solve shortest path problem\",\"authors\":\"Mohammad Eshaghnezhad, S. Effati, A. Mansoori\",\"doi\":\"10.1080/0952813X.2022.2067247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT We develop a projection recurrent neural network (RNN) to obtain the solution of the shortest path problem (SPP). Our focus on the paper is to give a compact single-layer structure RNN model to solve the SPP. To present the RNN model, we utilise a mixed linear complementarity problem (MLCP). Moreover, the developed RNN is proved to be globally stable. Finally, some numerical simulations are stated to show the performance of the presented approach. We compare the results with some other methods.\",\"PeriodicalId\":15677,\"journal\":{\"name\":\"Journal of Experimental & Theoretical Artificial Intelligence\",\"volume\":\"18 1\",\"pages\":\"1101 - 1119\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental & Theoretical Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/0952813X.2022.2067247\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Theoretical Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0952813X.2022.2067247","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A compact MLCP-based projection recurrent neural network model to solve shortest path problem
ABSTRACT We develop a projection recurrent neural network (RNN) to obtain the solution of the shortest path problem (SPP). Our focus on the paper is to give a compact single-layer structure RNN model to solve the SPP. To present the RNN model, we utilise a mixed linear complementarity problem (MLCP). Moreover, the developed RNN is proved to be globally stable. Finally, some numerical simulations are stated to show the performance of the presented approach. We compare the results with some other methods.
期刊介绍:
Journal of Experimental & Theoretical Artificial Intelligence (JETAI) is a world leading journal dedicated to publishing high quality, rigorously reviewed, original papers in artificial intelligence (AI) research.
The journal features work in all subfields of AI research and accepts both theoretical and applied research. Topics covered include, but are not limited to, the following:
• cognitive science
• games
• learning
• knowledge representation
• memory and neural system modelling
• perception
• problem-solving