拓扑Hochschild同调的Brun谱序列

Eva Höning
{"title":"拓扑Hochschild同调的Brun谱序列","authors":"Eva Höning","doi":"10.2140/AGT.2020.20.817","DOIUrl":null,"url":null,"abstract":"We generalize a spectral sequence of Brun for the computation of topological Hochschild homology. The generalized version computes the E-homology of THH(A;B), where E is a ring spectrum, A is a commutative S-algebra and B is a connective commutative Aalgebra. The input of the spectral sequence are the topological Hochschild homology groups of B with coefficients in the E-homology groups of B ∧A B. The mod p and v1 topological Hochschild homology of connective complex K-theory has been computed by Ausoni and later again by Rognes, Sagave and Schlichtkrull. We present an alternative, short computation using the generalized Brun spectral sequence.","PeriodicalId":8433,"journal":{"name":"arXiv: Algebraic Topology","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the Brun spectral sequence for topological Hochschild homology\",\"authors\":\"Eva Höning\",\"doi\":\"10.2140/AGT.2020.20.817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We generalize a spectral sequence of Brun for the computation of topological Hochschild homology. The generalized version computes the E-homology of THH(A;B), where E is a ring spectrum, A is a commutative S-algebra and B is a connective commutative Aalgebra. The input of the spectral sequence are the topological Hochschild homology groups of B with coefficients in the E-homology groups of B ∧A B. The mod p and v1 topological Hochschild homology of connective complex K-theory has been computed by Ausoni and later again by Rognes, Sagave and Schlichtkrull. We present an alternative, short computation using the generalized Brun spectral sequence.\",\"PeriodicalId\":8433,\"journal\":{\"name\":\"arXiv: Algebraic Topology\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/AGT.2020.20.817\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/AGT.2020.20.817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

推广了一种用于拓扑Hochschild同调计算的brown谱序列。广义版计算$THH(A;B)$的$E$-同调,其中$E$是环谱,$A$是交换$S$-代数,$B$是连接交换$A$-代数。谱序列的输入是$B$的拓扑Hochschild同调群,其系数为$B \wedge_A B$的$E$-同调群。连接复合体K -理论的mod $p$和$v_1$拓扑Hochschild同调由Ausoni计算,后来又由Rognes, Sagave和Schlichtkrull计算。我们提出了一种替代的,使用广义布朗谱序列的短计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Brun spectral sequence for topological Hochschild homology
We generalize a spectral sequence of Brun for the computation of topological Hochschild homology. The generalized version computes the E-homology of THH(A;B), where E is a ring spectrum, A is a commutative S-algebra and B is a connective commutative Aalgebra. The input of the spectral sequence are the topological Hochschild homology groups of B with coefficients in the E-homology groups of B ∧A B. The mod p and v1 topological Hochschild homology of connective complex K-theory has been computed by Ausoni and later again by Rognes, Sagave and Schlichtkrull. We present an alternative, short computation using the generalized Brun spectral sequence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信