基于双量化方法的电容式MEMS传感器MASH2-0机电σ - δ调制器

Bader Almutairi, A. Alshehri, M. Kraft
{"title":"基于双量化方法的电容式MEMS传感器MASH2-0机电σ - δ调制器","authors":"Bader Almutairi, A. Alshehri, M. Kraft","doi":"10.1109/ICSENS.2014.6985370","DOIUrl":null,"url":null,"abstract":"This paper presents a new control structure for an electromechanical sigma-delta modulator (EM-ΣΔM) based on the dual quantization technique. The modulator adopts a 2-0 multi-stage noise-shaping structure (MASH2-0), which was studied by system-level modeling and hardware implementation using an FPGA. The study shows that the MAH2-0, like the MASH2-2, is inherently stable, has a high overload-input level and high dynamic range compared to single-loop EM-ΣΔM. However, the MASH2-0, with its simpler implementation, achieved a higher dynamic range and better signal-to-noise ratio than a comparable MASH2-2 and fourth-order single-loop EM-ΣΔM. A capacitive MEMS accelerometer was designed and employed in this system. Within a bandwidth of 1 KHz, the sensor achieved a noise-floor level of -130 dB, a full scale of ±20g acceleration, and a bias instability of 20 μg for a period of three hours. The investigation confirms the concept of the MASH2-0 structure and shows its potential as a closed-loop interface for high-performance capacitive MEMS inertial sensors.","PeriodicalId":13244,"journal":{"name":"IEEE SENSORS 2014 Proceedings","volume":"58 1","pages":"1780-1783"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"MASH2-0 electromechanical sigma-delta modulator for capacitive MEMS sensors using dual quantization method\",\"authors\":\"Bader Almutairi, A. Alshehri, M. Kraft\",\"doi\":\"10.1109/ICSENS.2014.6985370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new control structure for an electromechanical sigma-delta modulator (EM-ΣΔM) based on the dual quantization technique. The modulator adopts a 2-0 multi-stage noise-shaping structure (MASH2-0), which was studied by system-level modeling and hardware implementation using an FPGA. The study shows that the MAH2-0, like the MASH2-2, is inherently stable, has a high overload-input level and high dynamic range compared to single-loop EM-ΣΔM. However, the MASH2-0, with its simpler implementation, achieved a higher dynamic range and better signal-to-noise ratio than a comparable MASH2-2 and fourth-order single-loop EM-ΣΔM. A capacitive MEMS accelerometer was designed and employed in this system. Within a bandwidth of 1 KHz, the sensor achieved a noise-floor level of -130 dB, a full scale of ±20g acceleration, and a bias instability of 20 μg for a period of three hours. The investigation confirms the concept of the MASH2-0 structure and shows its potential as a closed-loop interface for high-performance capacitive MEMS inertial sensors.\",\"PeriodicalId\":13244,\"journal\":{\"name\":\"IEEE SENSORS 2014 Proceedings\",\"volume\":\"58 1\",\"pages\":\"1780-1783\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE SENSORS 2014 Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSENS.2014.6985370\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE SENSORS 2014 Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2014.6985370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于对偶量化技术的机电σ - δ调制器(EM-ΣΔM)控制结构。该调制器采用2-0多级噪声整形结构(MASH2-0),通过系统级建模和FPGA硬件实现对其进行了研究。研究表明,与MASH2-2相比,MAH2-0具有固有的稳定性,具有高过载输入水平和高动态范围-ΣΔM。然而,与类似的MASH2-2和四阶单回路EM相比,MASH2-0实现更简单,实现了更高的动态范围和更好的信噪比-ΣΔM。设计并应用了电容式MEMS加速度计。在1 KHz的带宽内,传感器实现了-130 dB的本底噪声电平,±20g的满量程加速度,以及20 μg的偏置不稳定性,持续3小时。该研究证实了MASH2-0结构的概念,并显示了其作为高性能电容式MEMS惯性传感器闭环接口的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MASH2-0 electromechanical sigma-delta modulator for capacitive MEMS sensors using dual quantization method
This paper presents a new control structure for an electromechanical sigma-delta modulator (EM-ΣΔM) based on the dual quantization technique. The modulator adopts a 2-0 multi-stage noise-shaping structure (MASH2-0), which was studied by system-level modeling and hardware implementation using an FPGA. The study shows that the MAH2-0, like the MASH2-2, is inherently stable, has a high overload-input level and high dynamic range compared to single-loop EM-ΣΔM. However, the MASH2-0, with its simpler implementation, achieved a higher dynamic range and better signal-to-noise ratio than a comparable MASH2-2 and fourth-order single-loop EM-ΣΔM. A capacitive MEMS accelerometer was designed and employed in this system. Within a bandwidth of 1 KHz, the sensor achieved a noise-floor level of -130 dB, a full scale of ±20g acceleration, and a bias instability of 20 μg for a period of three hours. The investigation confirms the concept of the MASH2-0 structure and shows its potential as a closed-loop interface for high-performance capacitive MEMS inertial sensors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信