多速率卡尔曼滤波方法用于噪声子带系统的最优二维信号重构

J. Ni, K. Ho, K. Tse, J. Ni, M. Shen
{"title":"多速率卡尔曼滤波方法用于噪声子带系统的最优二维信号重构","authors":"J. Ni, K. Ho, K. Tse, J. Ni, M. Shen","doi":"10.1109/ICIP.1997.647411","DOIUrl":null,"url":null,"abstract":"Conventional synthesis filters in subband systems lose their optimality when additive noise due, for example, to signal quantization, disturbs the subband components. The multichannel representation of the subband signal is combined with the statistical model of the input signal to derive the multirate state-space model for a filter bank system with additive noise. Thus the signal reconstruction problem in the subband system can be formulated as the process of optimal state estimation in the equivalent multirate state-space model. With the input signal embedded in the state vector, the multirate Kalman filtering provides the minimum-variance reconstruction of the input signal. Using the powerful Kronecker product notation, the results and derivations can then be extended to the 2-D cases. Incorporated with the vector dynamical model, the 2-D multirate state-space model for 2-D Kalman filtering is developed. Computer simulation with the proposed 2-D multirate Kalman filter gives favorable results.","PeriodicalId":92344,"journal":{"name":"Computer analysis of images and patterns : proceedings of the ... International Conference on Automatic Image Processing. International Conference on Automatic Image Processing","volume":"1 1","pages":"157-160 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"1997-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Multirate Kalman filtering approach for optimal two-dimensional signal reconstruction from noisy subband systems\",\"authors\":\"J. Ni, K. Ho, K. Tse, J. Ni, M. Shen\",\"doi\":\"10.1109/ICIP.1997.647411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional synthesis filters in subband systems lose their optimality when additive noise due, for example, to signal quantization, disturbs the subband components. The multichannel representation of the subband signal is combined with the statistical model of the input signal to derive the multirate state-space model for a filter bank system with additive noise. Thus the signal reconstruction problem in the subband system can be formulated as the process of optimal state estimation in the equivalent multirate state-space model. With the input signal embedded in the state vector, the multirate Kalman filtering provides the minimum-variance reconstruction of the input signal. Using the powerful Kronecker product notation, the results and derivations can then be extended to the 2-D cases. Incorporated with the vector dynamical model, the 2-D multirate state-space model for 2-D Kalman filtering is developed. Computer simulation with the proposed 2-D multirate Kalman filter gives favorable results.\",\"PeriodicalId\":92344,\"journal\":{\"name\":\"Computer analysis of images and patterns : proceedings of the ... International Conference on Automatic Image Processing. International Conference on Automatic Image Processing\",\"volume\":\"1 1\",\"pages\":\"157-160 vol.1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer analysis of images and patterns : proceedings of the ... International Conference on Automatic Image Processing. International Conference on Automatic Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.1997.647411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer analysis of images and patterns : proceedings of the ... International Conference on Automatic Image Processing. International Conference on Automatic Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.1997.647411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

当信号量化等附加噪声干扰子带分量时,子带系统中的传统合成滤波器将失去其最优性。将子带信号的多通道表示与输入信号的统计模型相结合,导出了具有加性噪声的滤波器组系统的多速率状态空间模型。因此,子带系统中的信号重构问题可以表述为等效多率状态空间模型中的最优状态估计过程。将输入信号嵌入到状态向量中,多速率卡尔曼滤波提供输入信号的最小方差重构。使用强大的Kronecker积符号,结果和推导可以扩展到二维情况。结合矢量动力学模型,建立了二维卡尔曼滤波的二维多速率状态空间模型。用所提出的二维多速率卡尔曼滤波器进行计算机仿真,得到了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multirate Kalman filtering approach for optimal two-dimensional signal reconstruction from noisy subband systems
Conventional synthesis filters in subband systems lose their optimality when additive noise due, for example, to signal quantization, disturbs the subband components. The multichannel representation of the subband signal is combined with the statistical model of the input signal to derive the multirate state-space model for a filter bank system with additive noise. Thus the signal reconstruction problem in the subband system can be formulated as the process of optimal state estimation in the equivalent multirate state-space model. With the input signal embedded in the state vector, the multirate Kalman filtering provides the minimum-variance reconstruction of the input signal. Using the powerful Kronecker product notation, the results and derivations can then be extended to the 2-D cases. Incorporated with the vector dynamical model, the 2-D multirate state-space model for 2-D Kalman filtering is developed. Computer simulation with the proposed 2-D multirate Kalman filter gives favorable results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信