{"title":"比较测量步行性的方法","authors":"A. Bramson, Kazuto Okamoto, Megumi Hori","doi":"10.25088/complexsystems.30.4.539","DOIUrl":null,"url":null,"abstract":"Walkability analyses have gained increased attention for economic, environmental and health reasons, but the methods for assessing walkability have yet to be broadly evaluated. In this paper, five methods for calculating walkability scores are described: in-radius, circle buffers, road network node buffers, road network edge buffers and a fully integrated network approach. Unweighted and various weighted versions are analyzed to capture levels of preference for walking longer distances. The methods are evaluated via an application to train stations in central Tokyo in terms of accuracy, similarity and algorithm performance. The fully integrated network method produces the most accurate results in the shortest amount of processing time, but requires a large upfront investment of time and resources. The circle buffer method runs a bit slower, but does not require any network information and when properly weighted yields walkability scores very similar to the integrated network approach.","PeriodicalId":50871,"journal":{"name":"Advances in Complex Systems","volume":"1 1","pages":"539-565"},"PeriodicalIF":0.7000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Comparing Methods for Measuring Walkability\",\"authors\":\"A. Bramson, Kazuto Okamoto, Megumi Hori\",\"doi\":\"10.25088/complexsystems.30.4.539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Walkability analyses have gained increased attention for economic, environmental and health reasons, but the methods for assessing walkability have yet to be broadly evaluated. In this paper, five methods for calculating walkability scores are described: in-radius, circle buffers, road network node buffers, road network edge buffers and a fully integrated network approach. Unweighted and various weighted versions are analyzed to capture levels of preference for walking longer distances. The methods are evaluated via an application to train stations in central Tokyo in terms of accuracy, similarity and algorithm performance. The fully integrated network method produces the most accurate results in the shortest amount of processing time, but requires a large upfront investment of time and resources. The circle buffer method runs a bit slower, but does not require any network information and when properly weighted yields walkability scores very similar to the integrated network approach.\",\"PeriodicalId\":50871,\"journal\":{\"name\":\"Advances in Complex Systems\",\"volume\":\"1 1\",\"pages\":\"539-565\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Complex Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.25088/complexsystems.30.4.539\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Complex Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.25088/complexsystems.30.4.539","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Walkability analyses have gained increased attention for economic, environmental and health reasons, but the methods for assessing walkability have yet to be broadly evaluated. In this paper, five methods for calculating walkability scores are described: in-radius, circle buffers, road network node buffers, road network edge buffers and a fully integrated network approach. Unweighted and various weighted versions are analyzed to capture levels of preference for walking longer distances. The methods are evaluated via an application to train stations in central Tokyo in terms of accuracy, similarity and algorithm performance. The fully integrated network method produces the most accurate results in the shortest amount of processing time, but requires a large upfront investment of time and resources. The circle buffer method runs a bit slower, but does not require any network information and when properly weighted yields walkability scores very similar to the integrated network approach.
期刊介绍:
Advances in Complex Systems aims to provide a unique medium of communication for multidisciplinary approaches, either empirical or theoretical, to the study of complex systems. The latter are seen as systems comprised of multiple interacting components, or agents. Nonlinear feedback processes, stochastic influences, specific conditions for the supply of energy, matter, or information may lead to the emergence of new system qualities on the macroscopic scale that cannot be reduced to the dynamics of the agents. Quantitative approaches to the dynamics of complex systems have to consider a broad range of concepts, from analytical tools, statistical methods and computer simulations to distributed problem solving, learning and adaptation. This is an interdisciplinary enterprise.