通过单位元C^d扰动的重整化实现任意d维动态

B. Fayad, M. Saprykina
{"title":"通过单位元C^d扰动的重整化实现任意d维动态","authors":"B. Fayad, M. Saprykina","doi":"10.3934/dcds.2021129","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>Any <inline-formula><tex-math id=\"M3\">\\begin{document}$ C^d $\\end{document}</tex-math></inline-formula> conservative map <inline-formula><tex-math id=\"M4\">\\begin{document}$ f $\\end{document}</tex-math></inline-formula> of the <inline-formula><tex-math id=\"M5\">\\begin{document}$ d $\\end{document}</tex-math></inline-formula>-dimensional unit ball <inline-formula><tex-math id=\"M6\">\\begin{document}$ {\\mathbb B}^d $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M7\">\\begin{document}$ d\\geq 2 $\\end{document}</tex-math></inline-formula>, can be realized by renormalized iteration of a <inline-formula><tex-math id=\"M8\">\\begin{document}$ C^d $\\end{document}</tex-math></inline-formula> perturbation of identity: there exists a conservative diffeomorphism of <inline-formula><tex-math id=\"M9\">\\begin{document}$ {\\mathbb B}^d $\\end{document}</tex-math></inline-formula>, arbitrarily close to identity in the <inline-formula><tex-math id=\"M10\">\\begin{document}$ C^d $\\end{document}</tex-math></inline-formula> topology, that has a periodic disc on which the return dynamics after a <inline-formula><tex-math id=\"M11\">\\begin{document}$ C^d $\\end{document}</tex-math></inline-formula> change of coordinates is exactly <inline-formula><tex-math id=\"M12\">\\begin{document}$ f $\\end{document}</tex-math></inline-formula>.</p>","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"420 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Realizing arbitrary $d$-dimensional dynamics by renormalization of $C^d$-perturbations of identity\",\"authors\":\"B. Fayad, M. Saprykina\",\"doi\":\"10.3934/dcds.2021129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>Any <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ C^d $\\\\end{document}</tex-math></inline-formula> conservative map <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ f $\\\\end{document}</tex-math></inline-formula> of the <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ d $\\\\end{document}</tex-math></inline-formula>-dimensional unit ball <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ {\\\\mathbb B}^d $\\\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\\\"M7\\\">\\\\begin{document}$ d\\\\geq 2 $\\\\end{document}</tex-math></inline-formula>, can be realized by renormalized iteration of a <inline-formula><tex-math id=\\\"M8\\\">\\\\begin{document}$ C^d $\\\\end{document}</tex-math></inline-formula> perturbation of identity: there exists a conservative diffeomorphism of <inline-formula><tex-math id=\\\"M9\\\">\\\\begin{document}$ {\\\\mathbb B}^d $\\\\end{document}</tex-math></inline-formula>, arbitrarily close to identity in the <inline-formula><tex-math id=\\\"M10\\\">\\\\begin{document}$ C^d $\\\\end{document}</tex-math></inline-formula> topology, that has a periodic disc on which the return dynamics after a <inline-formula><tex-math id=\\\"M11\\\">\\\\begin{document}$ C^d $\\\\end{document}</tex-math></inline-formula> change of coordinates is exactly <inline-formula><tex-math id=\\\"M12\\\">\\\\begin{document}$ f $\\\\end{document}</tex-math></inline-formula>.</p>\",\"PeriodicalId\":11254,\"journal\":{\"name\":\"Discrete & Continuous Dynamical Systems - S\",\"volume\":\"420 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Continuous Dynamical Systems - S\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/dcds.2021129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Continuous Dynamical Systems - S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcds.2021129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

Any \begin{document}$ C^d $\end{document} conservative map \begin{document}$ f $\end{document} of the \begin{document}$ d $\end{document}-dimensional unit ball \begin{document}$ {\mathbb B}^d $\end{document}, \begin{document}$ d\geq 2 $\end{document}, can be realized by renormalized iteration of a \begin{document}$ C^d $\end{document} perturbation of identity: there exists a conservative diffeomorphism of \begin{document}$ {\mathbb B}^d $\end{document}, arbitrarily close to identity in the \begin{document}$ C^d $\end{document} topology, that has a periodic disc on which the return dynamics after a \begin{document}$ C^d $\end{document} change of coordinates is exactly \begin{document}$ f $\end{document}.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Realizing arbitrary $d$-dimensional dynamics by renormalization of $C^d$-perturbations of identity

Any \begin{document}$ C^d $\end{document} conservative map \begin{document}$ f $\end{document} of the \begin{document}$ d $\end{document}-dimensional unit ball \begin{document}$ {\mathbb B}^d $\end{document}, \begin{document}$ d\geq 2 $\end{document}, can be realized by renormalized iteration of a \begin{document}$ C^d $\end{document} perturbation of identity: there exists a conservative diffeomorphism of \begin{document}$ {\mathbb B}^d $\end{document}, arbitrarily close to identity in the \begin{document}$ C^d $\end{document} topology, that has a periodic disc on which the return dynamics after a \begin{document}$ C^d $\end{document} change of coordinates is exactly \begin{document}$ f $\end{document}.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信