G. Dospinescu, Vytautas Paškūnas, Benjamin Schraen
{"title":"Gelfand-Kirillov维和p进的Jacquet-Langlands对应","authors":"G. Dospinescu, Vytautas Paškūnas, Benjamin Schraen","doi":"10.1515/crelle-2023-0033","DOIUrl":null,"url":null,"abstract":"Abstract We bound the Gelfand–Kirillov dimension of unitary Banach space representations of p-adic reductive groups, whose locally analytic vectors afford an infinitesimal character. We use the bound to study Hecke eigenspaces in completed cohomology of Shimura curves and p-adic Banach space representations of the group of units of a quaternion algebra over ℚ p {\\mathbb{Q}_{p}} appearing in the p-adic Jacquet–Langlands correspondence, deducing finiteness results in favorable cases.","PeriodicalId":54896,"journal":{"name":"Journal fur die Reine und Angewandte Mathematik","volume":"261 1","pages":"57 - 114"},"PeriodicalIF":1.2000,"publicationDate":"2022-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Gelfand–Kirillov dimension and the p-adic Jacquet–Langlands correspondence\",\"authors\":\"G. Dospinescu, Vytautas Paškūnas, Benjamin Schraen\",\"doi\":\"10.1515/crelle-2023-0033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We bound the Gelfand–Kirillov dimension of unitary Banach space representations of p-adic reductive groups, whose locally analytic vectors afford an infinitesimal character. We use the bound to study Hecke eigenspaces in completed cohomology of Shimura curves and p-adic Banach space representations of the group of units of a quaternion algebra over ℚ p {\\\\mathbb{Q}_{p}} appearing in the p-adic Jacquet–Langlands correspondence, deducing finiteness results in favorable cases.\",\"PeriodicalId\":54896,\"journal\":{\"name\":\"Journal fur die Reine und Angewandte Mathematik\",\"volume\":\"261 1\",\"pages\":\"57 - 114\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal fur die Reine und Angewandte Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/crelle-2023-0033\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal fur die Reine und Angewandte Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2023-0033","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Gelfand–Kirillov dimension and the p-adic Jacquet–Langlands correspondence
Abstract We bound the Gelfand–Kirillov dimension of unitary Banach space representations of p-adic reductive groups, whose locally analytic vectors afford an infinitesimal character. We use the bound to study Hecke eigenspaces in completed cohomology of Shimura curves and p-adic Banach space representations of the group of units of a quaternion algebra over ℚ p {\mathbb{Q}_{p}} appearing in the p-adic Jacquet–Langlands correspondence, deducing finiteness results in favorable cases.
期刊介绍:
The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle"s Journal. In the almost 180 years of its existence, Crelle"s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals. It belongs to the very top mathematics periodicals, as listed in ISI"s Journal Citation Report.