Gelfand-Kirillov维和p进的Jacquet-Langlands对应

IF 1.2 1区 数学 Q1 MATHEMATICS
G. Dospinescu, Vytautas Paškūnas, Benjamin Schraen
{"title":"Gelfand-Kirillov维和p进的Jacquet-Langlands对应","authors":"G. Dospinescu, Vytautas Paškūnas, Benjamin Schraen","doi":"10.1515/crelle-2023-0033","DOIUrl":null,"url":null,"abstract":"Abstract We bound the Gelfand–Kirillov dimension of unitary Banach space representations of p-adic reductive groups, whose locally analytic vectors afford an infinitesimal character. We use the bound to study Hecke eigenspaces in completed cohomology of Shimura curves and p-adic Banach space representations of the group of units of a quaternion algebra over ℚ p {\\mathbb{Q}_{p}} appearing in the p-adic Jacquet–Langlands correspondence, deducing finiteness results in favorable cases.","PeriodicalId":54896,"journal":{"name":"Journal fur die Reine und Angewandte Mathematik","volume":"261 1","pages":"57 - 114"},"PeriodicalIF":1.2000,"publicationDate":"2022-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Gelfand–Kirillov dimension and the p-adic Jacquet–Langlands correspondence\",\"authors\":\"G. Dospinescu, Vytautas Paškūnas, Benjamin Schraen\",\"doi\":\"10.1515/crelle-2023-0033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We bound the Gelfand–Kirillov dimension of unitary Banach space representations of p-adic reductive groups, whose locally analytic vectors afford an infinitesimal character. We use the bound to study Hecke eigenspaces in completed cohomology of Shimura curves and p-adic Banach space representations of the group of units of a quaternion algebra over ℚ p {\\\\mathbb{Q}_{p}} appearing in the p-adic Jacquet–Langlands correspondence, deducing finiteness results in favorable cases.\",\"PeriodicalId\":54896,\"journal\":{\"name\":\"Journal fur die Reine und Angewandte Mathematik\",\"volume\":\"261 1\",\"pages\":\"57 - 114\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal fur die Reine und Angewandte Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/crelle-2023-0033\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal fur die Reine und Angewandte Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2023-0033","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

摘要对局部解析向量具有无穷小性质的p进约化群的酉Banach空间表示的Gelfand-Kirillov维进行了定界。利用该界研究了Shimura曲线完全上同调中的Hecke特征空间和p进Jacquet-Langlands对应中出现在π {\mathbb{Q}_{p}}上的四元代数单位群的p进Banach空间表示,在有利的情况下推导出有限结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gelfand–Kirillov dimension and the p-adic Jacquet–Langlands correspondence
Abstract We bound the Gelfand–Kirillov dimension of unitary Banach space representations of p-adic reductive groups, whose locally analytic vectors afford an infinitesimal character. We use the bound to study Hecke eigenspaces in completed cohomology of Shimura curves and p-adic Banach space representations of the group of units of a quaternion algebra over ℚ p {\mathbb{Q}_{p}} appearing in the p-adic Jacquet–Langlands correspondence, deducing finiteness results in favorable cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
6.70%
发文量
97
审稿时长
6-12 weeks
期刊介绍: The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle"s Journal. In the almost 180 years of its existence, Crelle"s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals. It belongs to the very top mathematics periodicals, as listed in ISI"s Journal Citation Report.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信