人工神经网络与增量电导法相结合对MPPT控制方法的贡献

Noureddine Akoubi, J. B. Salem, L. El Amraoui
{"title":"人工神经网络与增量电导法相结合对MPPT控制方法的贡献","authors":"Noureddine Akoubi, J. B. Salem, L. El Amraoui","doi":"10.1109/IC_ASET53395.2022.9765914","DOIUrl":null,"url":null,"abstract":"This paper proposes a robust approach to design a maximum power point tracking (MPPT) controller based on artificial neural networks (ANN). This approach is developed by combining the incremental conductance (IC) method and ANN. The first step presents the MPPT control system using the conventional IC method (MPPT_IC). Then, a second step proposes an algorithm exploiting the IC method to generate the appropriate training data for the ANN. The results show the ability of the ANN controller (MPPT_ANN) to provide the best control performance under various solar irradiance and temperature values. Its effectiveness of tracking has been compared to the traditional MPPT_IC controller. The test results presented show the performance of the proposed MPPT_ANN controller. The study results are simulated and validated by MATLAB/Simulink software.","PeriodicalId":6874,"journal":{"name":"2022 5th International Conference on Advanced Systems and Emergent Technologies (IC_ASET)","volume":"21 1","pages":"109-114"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Contribution on the Combination of Artificial Neural Network and Incremental Conductance Method to MPPT Control Approach\",\"authors\":\"Noureddine Akoubi, J. B. Salem, L. El Amraoui\",\"doi\":\"10.1109/IC_ASET53395.2022.9765914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a robust approach to design a maximum power point tracking (MPPT) controller based on artificial neural networks (ANN). This approach is developed by combining the incremental conductance (IC) method and ANN. The first step presents the MPPT control system using the conventional IC method (MPPT_IC). Then, a second step proposes an algorithm exploiting the IC method to generate the appropriate training data for the ANN. The results show the ability of the ANN controller (MPPT_ANN) to provide the best control performance under various solar irradiance and temperature values. Its effectiveness of tracking has been compared to the traditional MPPT_IC controller. The test results presented show the performance of the proposed MPPT_ANN controller. The study results are simulated and validated by MATLAB/Simulink software.\",\"PeriodicalId\":6874,\"journal\":{\"name\":\"2022 5th International Conference on Advanced Systems and Emergent Technologies (IC_ASET)\",\"volume\":\"21 1\",\"pages\":\"109-114\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 5th International Conference on Advanced Systems and Emergent Technologies (IC_ASET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC_ASET53395.2022.9765914\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th International Conference on Advanced Systems and Emergent Technologies (IC_ASET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC_ASET53395.2022.9765914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种基于人工神经网络(ANN)的最大功率点跟踪(MPPT)控制器的鲁棒设计方法。该方法是将增量电导(IC)法与人工神经网络相结合而发展起来的。第一步介绍了采用传统集成电路方法(MPPT_IC)的MPPT控制系统。然后,第二步提出了一种利用IC方法为人工神经网络生成适当训练数据的算法。结果表明,该神经网络控制器(MPPT_ANN)在不同的太阳辐照度和温度下都能提供最佳的控制性能。并与传统的MPPT_IC控制器进行了跟踪效果的比较。实验结果表明了所提出的MPPT_ANN控制器的性能。利用MATLAB/Simulink软件对研究结果进行了仿真验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contribution on the Combination of Artificial Neural Network and Incremental Conductance Method to MPPT Control Approach
This paper proposes a robust approach to design a maximum power point tracking (MPPT) controller based on artificial neural networks (ANN). This approach is developed by combining the incremental conductance (IC) method and ANN. The first step presents the MPPT control system using the conventional IC method (MPPT_IC). Then, a second step proposes an algorithm exploiting the IC method to generate the appropriate training data for the ANN. The results show the ability of the ANN controller (MPPT_ANN) to provide the best control performance under various solar irradiance and temperature values. Its effectiveness of tracking has been compared to the traditional MPPT_IC controller. The test results presented show the performance of the proposed MPPT_ANN controller. The study results are simulated and validated by MATLAB/Simulink software.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信