健康社会网络中的时间敏感行为预测

Amnay Amimeur, Nhathai Phan, D. Dou, David Kil, B. Piniewski
{"title":"健康社会网络中的时间敏感行为预测","authors":"Amnay Amimeur, Nhathai Phan, D. Dou, David Kil, B. Piniewski","doi":"10.1109/ICMLA.2017.000-4","DOIUrl":null,"url":null,"abstract":"Human behavior prediction is critical in understanding and addressing large scale health and social issues in online communities. Specifically, predicting when in the future a user will engage in a behavior as opposed to whether a user will behave at a particular time is a less studied subproblem of behavior prediction. Further lacking is exploration of how social context affects personal behavior and the exploitation of network structure information in behavior and time prediction. To address these problems we propose a novel semi-supervised deep learning model for prediction of return time to personal behavior. A carefully designed objective function ensures the model learns good social context embeddings and historical behavior embeddings in order to capture the effects of social influence on personal behavior. Our model is validated on a unique health social network dataset by predicting when users will engage in physical activities. We show our model outperforms relevant time prediction baselines.","PeriodicalId":6636,"journal":{"name":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"31 1","pages":"1083-1088"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Time-Sensitive Behavior Prediction in a Health Social Network\",\"authors\":\"Amnay Amimeur, Nhathai Phan, D. Dou, David Kil, B. Piniewski\",\"doi\":\"10.1109/ICMLA.2017.000-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human behavior prediction is critical in understanding and addressing large scale health and social issues in online communities. Specifically, predicting when in the future a user will engage in a behavior as opposed to whether a user will behave at a particular time is a less studied subproblem of behavior prediction. Further lacking is exploration of how social context affects personal behavior and the exploitation of network structure information in behavior and time prediction. To address these problems we propose a novel semi-supervised deep learning model for prediction of return time to personal behavior. A carefully designed objective function ensures the model learns good social context embeddings and historical behavior embeddings in order to capture the effects of social influence on personal behavior. Our model is validated on a unique health social network dataset by predicting when users will engage in physical activities. We show our model outperforms relevant time prediction baselines.\",\"PeriodicalId\":6636,\"journal\":{\"name\":\"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"volume\":\"31 1\",\"pages\":\"1083-1088\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2017.000-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2017.000-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

人类行为预测对于理解和解决在线社区中的大规模健康和社会问题至关重要。具体来说,预测用户在未来什么时候会做出某种行为,而不是用户在某个特定时间是否会做出某种行为,这是行为预测中一个研究较少的子问题。更缺乏的是对社会环境如何影响个人行为的探索,以及在行为和时间预测中利用网络结构信息。为了解决这些问题,我们提出了一种新的半监督深度学习模型来预测个人行为的回归时间。精心设计的目标函数确保模型学习良好的社会情境嵌入和历史行为嵌入,以捕捉社会影响对个人行为的影响。我们的模型在一个独特的健康社交网络数据集上通过预测用户什么时候会参加体育活动来验证。我们表明我们的模型优于相关的时间预测基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time-Sensitive Behavior Prediction in a Health Social Network
Human behavior prediction is critical in understanding and addressing large scale health and social issues in online communities. Specifically, predicting when in the future a user will engage in a behavior as opposed to whether a user will behave at a particular time is a less studied subproblem of behavior prediction. Further lacking is exploration of how social context affects personal behavior and the exploitation of network structure information in behavior and time prediction. To address these problems we propose a novel semi-supervised deep learning model for prediction of return time to personal behavior. A carefully designed objective function ensures the model learns good social context embeddings and historical behavior embeddings in order to capture the effects of social influence on personal behavior. Our model is validated on a unique health social network dataset by predicting when users will engage in physical activities. We show our model outperforms relevant time prediction baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信