1.5 um左右光学放大用硅酸铒的氢钝化和微观结构制备(会议报告)

D. Vipin, Mengbing Huang
{"title":"1.5 um左右光学放大用硅酸铒的氢钝化和微观结构制备(会议报告)","authors":"D. Vipin, Mengbing Huang","doi":"10.1117/12.2510391","DOIUrl":null,"url":null,"abstract":"Erbium (Er) has offered a means towards optical amplification around 1.5 µm due to the intra-4f transitions of Er3+ ions. Er silicates are of much interest due to a 3 order increase in the concentration of Er3+ ions in the film as opposed to different Er-doped materials. Unfortunately, the major hindrance toward optical gains in such erbium containing materials is the fast quenching of Er luminescence, mainly resulting from excitation energy dissipation at structural defects even with a small density, via resonant energy transfer processes among Er ions. In this work, we investigate effects of hydrogen passivation and micro/nano scale structures on the luminescence properties of Er silicates. Arrays of micron-sized erbium silicate structures are created via etching a silicon wafer followed by deposition of erbium metal onto the etched pits. After deposition, the photoresist is removed through lift off and the metal structures are subjected to high temperature oxygen annealing (1200˚C) for oxidation of the film. Hydrogen passivation is conducted in a H2 gas ambient between 500˚C and 900˚C. Rutherford backscattering spectroscopy (RBS) and x-ray diffraction (XRD) are used to determine the composition and crystal structure information of the resultant thin films and photoluminescence (PL) is measured for their luminescence properties. The results show a significant decrease of photoluminescence in the ultraviolet/visible (UV/Vis) range, accompanied by an increase in both the intensity and lifetime of the near-infrared (NIR) luminescence emission around 1.5 µm wavelength from Er oxide/silicate compound thin films, following passivation in a H2 gas. Furthermore, samples with arrays of micro-structured Er silicates exhibit stronger NIR luminescence than the thin film sample. Combining with computer simulations, we identify the possible mechanisms for the observed Er luminescence enhancement, and suggest promising routes toward optical amplification around 1.5 µm in Er compounds.","PeriodicalId":21725,"journal":{"name":"Silicon Photonics XIV","volume":"389 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogen passivation and microstructure fabrication in erbium silicates for optical amplification applications around 1.5 um (Conference Presentation)\",\"authors\":\"D. Vipin, Mengbing Huang\",\"doi\":\"10.1117/12.2510391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Erbium (Er) has offered a means towards optical amplification around 1.5 µm due to the intra-4f transitions of Er3+ ions. Er silicates are of much interest due to a 3 order increase in the concentration of Er3+ ions in the film as opposed to different Er-doped materials. Unfortunately, the major hindrance toward optical gains in such erbium containing materials is the fast quenching of Er luminescence, mainly resulting from excitation energy dissipation at structural defects even with a small density, via resonant energy transfer processes among Er ions. In this work, we investigate effects of hydrogen passivation and micro/nano scale structures on the luminescence properties of Er silicates. Arrays of micron-sized erbium silicate structures are created via etching a silicon wafer followed by deposition of erbium metal onto the etched pits. After deposition, the photoresist is removed through lift off and the metal structures are subjected to high temperature oxygen annealing (1200˚C) for oxidation of the film. Hydrogen passivation is conducted in a H2 gas ambient between 500˚C and 900˚C. Rutherford backscattering spectroscopy (RBS) and x-ray diffraction (XRD) are used to determine the composition and crystal structure information of the resultant thin films and photoluminescence (PL) is measured for their luminescence properties. The results show a significant decrease of photoluminescence in the ultraviolet/visible (UV/Vis) range, accompanied by an increase in both the intensity and lifetime of the near-infrared (NIR) luminescence emission around 1.5 µm wavelength from Er oxide/silicate compound thin films, following passivation in a H2 gas. Furthermore, samples with arrays of micro-structured Er silicates exhibit stronger NIR luminescence than the thin film sample. Combining with computer simulations, we identify the possible mechanisms for the observed Er luminescence enhancement, and suggest promising routes toward optical amplification around 1.5 µm in Er compounds.\",\"PeriodicalId\":21725,\"journal\":{\"name\":\"Silicon Photonics XIV\",\"volume\":\"389 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Silicon Photonics XIV\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2510391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Silicon Photonics XIV","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2510391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于Er3+离子的4f内跃迁,铒(Er)提供了一种光学放大约1.5µm的方法。由于薄膜中Er3+离子的浓度比其他掺铒材料增加了3个数量级,因此对铒硅酸盐非常感兴趣。不幸的是,在这种含铒材料中实现光学增益的主要障碍是铒发光的快速猝灭,这主要是由于铒离子之间的共振能量转移过程在结构缺陷处引起的激发能耗散,即使密度很小。在这项工作中,我们研究了氢钝化和微纳米尺度结构对Er硅酸盐发光性能的影响。通过蚀刻硅片,然后在蚀刻的凹坑上沉积金属铒,形成微米尺寸的硅酸铒结构阵列。沉积后,通过剥离去除光刻胶,金属结构进行高温氧退火(1200℃)氧化膜。在500℃~ 900℃的氢气环境中进行氢钝化。利用卢瑟福后向散射光谱(RBS)和x射线衍射(XRD)测定了所得薄膜的组成和晶体结构信息,并测量了其发光性能。结果表明,氧化铒/硅酸盐复合薄膜在H2气体中钝化后,紫外/可见光(UV/Vis)范围内的光致发光显著降低,而在1.5µm波长附近的近红外(NIR)发光强度和寿命均有所增加。此外,微结构硅酸Er阵列的样品比薄膜样品表现出更强的近红外发光。结合计算机模拟,我们确定了观察到的Er发光增强的可能机制,并提出了在Er化合物中1.5µm左右进行光学放大的有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydrogen passivation and microstructure fabrication in erbium silicates for optical amplification applications around 1.5 um (Conference Presentation)
Erbium (Er) has offered a means towards optical amplification around 1.5 µm due to the intra-4f transitions of Er3+ ions. Er silicates are of much interest due to a 3 order increase in the concentration of Er3+ ions in the film as opposed to different Er-doped materials. Unfortunately, the major hindrance toward optical gains in such erbium containing materials is the fast quenching of Er luminescence, mainly resulting from excitation energy dissipation at structural defects even with a small density, via resonant energy transfer processes among Er ions. In this work, we investigate effects of hydrogen passivation and micro/nano scale structures on the luminescence properties of Er silicates. Arrays of micron-sized erbium silicate structures are created via etching a silicon wafer followed by deposition of erbium metal onto the etched pits. After deposition, the photoresist is removed through lift off and the metal structures are subjected to high temperature oxygen annealing (1200˚C) for oxidation of the film. Hydrogen passivation is conducted in a H2 gas ambient between 500˚C and 900˚C. Rutherford backscattering spectroscopy (RBS) and x-ray diffraction (XRD) are used to determine the composition and crystal structure information of the resultant thin films and photoluminescence (PL) is measured for their luminescence properties. The results show a significant decrease of photoluminescence in the ultraviolet/visible (UV/Vis) range, accompanied by an increase in both the intensity and lifetime of the near-infrared (NIR) luminescence emission around 1.5 µm wavelength from Er oxide/silicate compound thin films, following passivation in a H2 gas. Furthermore, samples with arrays of micro-structured Er silicates exhibit stronger NIR luminescence than the thin film sample. Combining with computer simulations, we identify the possible mechanisms for the observed Er luminescence enhancement, and suggest promising routes toward optical amplification around 1.5 µm in Er compounds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信