评价位算法的数值稳定性

Nicholas Buoncristiani, Sanjana Shah, D. Donofrio, J. Shalf
{"title":"评价位算法的数值稳定性","authors":"Nicholas Buoncristiani, Sanjana Shah, D. Donofrio, J. Shalf","doi":"10.1109/IPDPS47924.2020.00069","DOIUrl":null,"url":null,"abstract":"The Posit number format has been proposed by John Gustafson as an alternative to the IEEE 754 standard floatingpoint format. Posits offer a unique form of tapered precision whereas IEEE floating-point numbers provide the same relative precision across most of their representational range. Posits are argued to have a variety of advantages including better numerical stability and simpler exception handling.The objective of this paper is to evaluate the numerical stability of Posits for solving linear systems where we evaluate Conjugate Gradient Method to demonstrate an iterative solver and Cholesky-Factorization to demonstrate a direct solver. We show that Posits do not consistently improve stability across a wide range of matrices, but we demonstrate that a simple rescaling of the underlying matrix improves convergence rates for Conjugate Gradient Method and reduces backward error for Cholesky Factorization. We also demonstrate that 16-bit Posit outperforms Float16 for mixed precision iterative refinement - especially when used in conjunction with a recently proposed matrix re-scaling strategy proposed by Nicholas Higham.","PeriodicalId":6805,"journal":{"name":"2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"1 1","pages":"612-621"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Evaluating the Numerical Stability of Posit Arithmetic\",\"authors\":\"Nicholas Buoncristiani, Sanjana Shah, D. Donofrio, J. Shalf\",\"doi\":\"10.1109/IPDPS47924.2020.00069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Posit number format has been proposed by John Gustafson as an alternative to the IEEE 754 standard floatingpoint format. Posits offer a unique form of tapered precision whereas IEEE floating-point numbers provide the same relative precision across most of their representational range. Posits are argued to have a variety of advantages including better numerical stability and simpler exception handling.The objective of this paper is to evaluate the numerical stability of Posits for solving linear systems where we evaluate Conjugate Gradient Method to demonstrate an iterative solver and Cholesky-Factorization to demonstrate a direct solver. We show that Posits do not consistently improve stability across a wide range of matrices, but we demonstrate that a simple rescaling of the underlying matrix improves convergence rates for Conjugate Gradient Method and reduces backward error for Cholesky Factorization. We also demonstrate that 16-bit Posit outperforms Float16 for mixed precision iterative refinement - especially when used in conjunction with a recently proposed matrix re-scaling strategy proposed by Nicholas Higham.\",\"PeriodicalId\":6805,\"journal\":{\"name\":\"2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"volume\":\"1 1\",\"pages\":\"612-621\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS47924.2020.00069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS47924.2020.00069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

正数格式由John Gustafson提出,作为IEEE 754标准浮点格式的替代方案。正数提供了一种独特的锥形精度形式,而IEEE浮点数在其大部分表示范围内提供相同的相对精度。Posits被认为具有多种优点,包括更好的数值稳定性和更简单的异常处理。本文的目的是评估求解线性系统的点的数值稳定性,其中我们评估了共轭梯度法来证明一个迭代求解器,并评估了乔列斯基分解来证明一个直接求解器。我们证明了Posits并不能在广泛的矩阵范围内始终提高稳定性,但我们证明了对底层矩阵进行简单的重新缩放可以提高共轭梯度法的收敛速度,并减少了Cholesky分解的向后误差。我们还证明了16位Posit在混合精度迭代细化方面优于Float16,特别是当与Nicholas Higham最近提出的矩阵重新缩放策略结合使用时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluating the Numerical Stability of Posit Arithmetic
The Posit number format has been proposed by John Gustafson as an alternative to the IEEE 754 standard floatingpoint format. Posits offer a unique form of tapered precision whereas IEEE floating-point numbers provide the same relative precision across most of their representational range. Posits are argued to have a variety of advantages including better numerical stability and simpler exception handling.The objective of this paper is to evaluate the numerical stability of Posits for solving linear systems where we evaluate Conjugate Gradient Method to demonstrate an iterative solver and Cholesky-Factorization to demonstrate a direct solver. We show that Posits do not consistently improve stability across a wide range of matrices, but we demonstrate that a simple rescaling of the underlying matrix improves convergence rates for Conjugate Gradient Method and reduces backward error for Cholesky Factorization. We also demonstrate that 16-bit Posit outperforms Float16 for mixed precision iterative refinement - especially when used in conjunction with a recently proposed matrix re-scaling strategy proposed by Nicholas Higham.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信