{"title":"高斯过程的有限元表示:平衡数值和统计精度","authors":"D. Sanz-Alonso, Ruiyi Yang","doi":"10.1137/21m144788x","DOIUrl":null,"url":null,"abstract":"The stochastic partial differential equation approach to Gaussian processes (GPs) represents Matérn GP priors in terms of 𝑛 finite element basis functions and Gaussian coefficients with sparse precision matrix. Such representations enhance the scalability of GP regression and classification to datasets of large size 𝑁 by setting 𝑛 ≈ 𝑁 and exploiting sparsity. In this paper we reconsider the standard choice 𝑛 ≈ 𝑁 through an analysis of the estimation performance. Our theory implies that, under certain smoothness assumptions, one can reduce the computation and memory cost without hindering the estimation accuracy by setting 𝑛 ≪ 𝑁 in the large 𝑁 asymptotics. Numerical experiments illustrate the applicability of our theory and the effect of the prior lengthscale in the pre-asymptotic regime.","PeriodicalId":56064,"journal":{"name":"Siam-Asa Journal on Uncertainty Quantification","volume":"134 1","pages":"1323-1349"},"PeriodicalIF":2.1000,"publicationDate":"2021-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Finite Element Representations of Gaussian Processes: Balancing Numerical and Statistical Accuracy\",\"authors\":\"D. Sanz-Alonso, Ruiyi Yang\",\"doi\":\"10.1137/21m144788x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The stochastic partial differential equation approach to Gaussian processes (GPs) represents Matérn GP priors in terms of 𝑛 finite element basis functions and Gaussian coefficients with sparse precision matrix. Such representations enhance the scalability of GP regression and classification to datasets of large size 𝑁 by setting 𝑛 ≈ 𝑁 and exploiting sparsity. In this paper we reconsider the standard choice 𝑛 ≈ 𝑁 through an analysis of the estimation performance. Our theory implies that, under certain smoothness assumptions, one can reduce the computation and memory cost without hindering the estimation accuracy by setting 𝑛 ≪ 𝑁 in the large 𝑁 asymptotics. Numerical experiments illustrate the applicability of our theory and the effect of the prior lengthscale in the pre-asymptotic regime.\",\"PeriodicalId\":56064,\"journal\":{\"name\":\"Siam-Asa Journal on Uncertainty Quantification\",\"volume\":\"134 1\",\"pages\":\"1323-1349\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2021-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Siam-Asa Journal on Uncertainty Quantification\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1137/21m144788x\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siam-Asa Journal on Uncertainty Quantification","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1137/21m144788x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 11
摘要
高斯过程(GPs)的随机偏微分方程方法用𝑛有限元基函数和高斯系数的稀疏精度矩阵来表示mat n n GP先验。这样的表示通过设置𝑛≈抛掷和利用稀疏性,增强了GP回归和分类对大型数据集的可扩展性。在本文中,我们通过对估计性能的分析,重新考虑了标准选择𝑛≈二进制操作。我们的理论表明,在一定的平滑性假设下,可以通过设置𝑛在大的渐近曲线中≪倘使计算和存储成本降低而不影响估计精度。数值实验证明了本文理论的适用性和先验长度尺度在前渐近状态下的影响。
Finite Element Representations of Gaussian Processes: Balancing Numerical and Statistical Accuracy
The stochastic partial differential equation approach to Gaussian processes (GPs) represents Matérn GP priors in terms of 𝑛 finite element basis functions and Gaussian coefficients with sparse precision matrix. Such representations enhance the scalability of GP regression and classification to datasets of large size 𝑁 by setting 𝑛 ≈ 𝑁 and exploiting sparsity. In this paper we reconsider the standard choice 𝑛 ≈ 𝑁 through an analysis of the estimation performance. Our theory implies that, under certain smoothness assumptions, one can reduce the computation and memory cost without hindering the estimation accuracy by setting 𝑛 ≪ 𝑁 in the large 𝑁 asymptotics. Numerical experiments illustrate the applicability of our theory and the effect of the prior lengthscale in the pre-asymptotic regime.
期刊介绍:
SIAM/ASA Journal on Uncertainty Quantification (JUQ) publishes research articles presenting significant mathematical, statistical, algorithmic, and application advances in uncertainty quantification, defined as the interface of complex modeling of processes and data, especially characterizations of the uncertainties inherent in the use of such models. The journal also focuses on related fields such as sensitivity analysis, model validation, model calibration, data assimilation, and code verification. The journal also solicits papers describing new ideas that could lead to significant progress in methodology for uncertainty quantification as well as review articles on particular aspects. The journal is dedicated to nurturing synergistic interactions between the mathematical, statistical, computational, and applications communities involved in uncertainty quantification and related areas. JUQ is jointly offered by SIAM and the American Statistical Association.