高斯过程的有限元表示:平衡数值和统计精度

IF 2.1 3区 工程技术 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
D. Sanz-Alonso, Ruiyi Yang
{"title":"高斯过程的有限元表示:平衡数值和统计精度","authors":"D. Sanz-Alonso, Ruiyi Yang","doi":"10.1137/21m144788x","DOIUrl":null,"url":null,"abstract":"The stochastic partial differential equation approach to Gaussian processes (GPs) represents Matérn GP priors in terms of 𝑛 finite element basis functions and Gaussian coefficients with sparse precision matrix. Such representations enhance the scalability of GP regression and classification to datasets of large size 𝑁 by setting 𝑛 ≈ 𝑁 and exploiting sparsity. In this paper we reconsider the standard choice 𝑛 ≈ 𝑁 through an analysis of the estimation performance. Our theory implies that, under certain smoothness assumptions, one can reduce the computation and memory cost without hindering the estimation accuracy by setting 𝑛 ≪ 𝑁 in the large 𝑁 asymptotics. Numerical experiments illustrate the applicability of our theory and the effect of the prior lengthscale in the pre-asymptotic regime.","PeriodicalId":56064,"journal":{"name":"Siam-Asa Journal on Uncertainty Quantification","volume":"134 1","pages":"1323-1349"},"PeriodicalIF":2.1000,"publicationDate":"2021-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Finite Element Representations of Gaussian Processes: Balancing Numerical and Statistical Accuracy\",\"authors\":\"D. Sanz-Alonso, Ruiyi Yang\",\"doi\":\"10.1137/21m144788x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The stochastic partial differential equation approach to Gaussian processes (GPs) represents Matérn GP priors in terms of 𝑛 finite element basis functions and Gaussian coefficients with sparse precision matrix. Such representations enhance the scalability of GP regression and classification to datasets of large size 𝑁 by setting 𝑛 ≈ 𝑁 and exploiting sparsity. In this paper we reconsider the standard choice 𝑛 ≈ 𝑁 through an analysis of the estimation performance. Our theory implies that, under certain smoothness assumptions, one can reduce the computation and memory cost without hindering the estimation accuracy by setting 𝑛 ≪ 𝑁 in the large 𝑁 asymptotics. Numerical experiments illustrate the applicability of our theory and the effect of the prior lengthscale in the pre-asymptotic regime.\",\"PeriodicalId\":56064,\"journal\":{\"name\":\"Siam-Asa Journal on Uncertainty Quantification\",\"volume\":\"134 1\",\"pages\":\"1323-1349\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2021-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Siam-Asa Journal on Uncertainty Quantification\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1137/21m144788x\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siam-Asa Journal on Uncertainty Quantification","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1137/21m144788x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 11

摘要

高斯过程(GPs)的随机偏微分方程方法用𝑛有限元基函数和高斯系数的稀疏精度矩阵来表示mat n n GP先验。这样的表示通过设置𝑛≈抛掷和利用稀疏性,增强了GP回归和分类对大型数据集的可扩展性。在本文中,我们通过对估计性能的分析,重新考虑了标准选择𝑛≈二进制操作。我们的理论表明,在一定的平滑性假设下,可以通过设置𝑛在大的渐近曲线中≪倘使计算和存储成本降低而不影响估计精度。数值实验证明了本文理论的适用性和先验长度尺度在前渐近状态下的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite Element Representations of Gaussian Processes: Balancing Numerical and Statistical Accuracy
The stochastic partial differential equation approach to Gaussian processes (GPs) represents Matérn GP priors in terms of 𝑛 finite element basis functions and Gaussian coefficients with sparse precision matrix. Such representations enhance the scalability of GP regression and classification to datasets of large size 𝑁 by setting 𝑛 ≈ 𝑁 and exploiting sparsity. In this paper we reconsider the standard choice 𝑛 ≈ 𝑁 through an analysis of the estimation performance. Our theory implies that, under certain smoothness assumptions, one can reduce the computation and memory cost without hindering the estimation accuracy by setting 𝑛 ≪ 𝑁 in the large 𝑁 asymptotics. Numerical experiments illustrate the applicability of our theory and the effect of the prior lengthscale in the pre-asymptotic regime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Siam-Asa Journal on Uncertainty Quantification
Siam-Asa Journal on Uncertainty Quantification Mathematics-Statistics and Probability
CiteScore
3.70
自引率
0.00%
发文量
51
期刊介绍: SIAM/ASA Journal on Uncertainty Quantification (JUQ) publishes research articles presenting significant mathematical, statistical, algorithmic, and application advances in uncertainty quantification, defined as the interface of complex modeling of processes and data, especially characterizations of the uncertainties inherent in the use of such models. The journal also focuses on related fields such as sensitivity analysis, model validation, model calibration, data assimilation, and code verification. The journal also solicits papers describing new ideas that could lead to significant progress in methodology for uncertainty quantification as well as review articles on particular aspects. The journal is dedicated to nurturing synergistic interactions between the mathematical, statistical, computational, and applications communities involved in uncertainty quantification and related areas. JUQ is jointly offered by SIAM and the American Statistical Association.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信