在《NetHack》中学习战斗

Jonathan C. Campbell, Clark Verbrugge
{"title":"在《NetHack》中学习战斗","authors":"Jonathan C. Campbell, Clark Verbrugge","doi":"10.1609/aiide.v13i1.12923","DOIUrl":null,"url":null,"abstract":"\n \n Combat in roguelikes involves careful strategy to best match a large variety of items and abilities to a given opponent, and the significant scripting effort involved can be a major barrier to automation. This paper presents a machine learning approach for a subset of combat in the game of NetHack. We describe a custom learning approach intended to deal with the large action space typical of this genre, and show that it is able to develop and apply reasonable strategies, outperforming a simpler baseline approach. These results point towards better automation of such complex game environments, facilitating automated testing and design exploration.\n \n","PeriodicalId":92576,"journal":{"name":"Proceedings. AAAI Artificial Intelligence and Interactive Digital Entertainment Conference","volume":"46 1","pages":"16-22"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Learning Combat in NetHack\",\"authors\":\"Jonathan C. Campbell, Clark Verbrugge\",\"doi\":\"10.1609/aiide.v13i1.12923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n Combat in roguelikes involves careful strategy to best match a large variety of items and abilities to a given opponent, and the significant scripting effort involved can be a major barrier to automation. This paper presents a machine learning approach for a subset of combat in the game of NetHack. We describe a custom learning approach intended to deal with the large action space typical of this genre, and show that it is able to develop and apply reasonable strategies, outperforming a simpler baseline approach. These results point towards better automation of such complex game environments, facilitating automated testing and design exploration.\\n \\n\",\"PeriodicalId\":92576,\"journal\":{\"name\":\"Proceedings. AAAI Artificial Intelligence and Interactive Digital Entertainment Conference\",\"volume\":\"46 1\",\"pages\":\"16-22\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. AAAI Artificial Intelligence and Interactive Digital Entertainment Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/aiide.v13i1.12923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. AAAI Artificial Intelligence and Interactive Digital Entertainment Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aiide.v13i1.12923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

roguelikes中的战斗需要谨慎的策略,以便将各种道具和能力与给定的对手进行最佳匹配,而所涉及的大量脚本编写工作可能成为自动化的主要障碍。本文针对《NetHack》游戏中的战斗子集提出了一种机器学习方法。我们描述了一种定制的学习方法,旨在处理这类游戏典型的大型动作空间,并表明它能够开发和应用合理的策略,优于简单的基线方法。这些结果指向了复杂游戏环境的更好自动化,促进了自动化测试和设计探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Combat in NetHack
Combat in roguelikes involves careful strategy to best match a large variety of items and abilities to a given opponent, and the significant scripting effort involved can be a major barrier to automation. This paper presents a machine learning approach for a subset of combat in the game of NetHack. We describe a custom learning approach intended to deal with the large action space typical of this genre, and show that it is able to develop and apply reasonable strategies, outperforming a simpler baseline approach. These results point towards better automation of such complex game environments, facilitating automated testing and design exploration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信