复单位球到可约有界对称区域的全纯等距映射

IF 1.2 1区 数学 Q1 MATHEMATICS
Ming Xiao
{"title":"复单位球到可约有界对称区域的全纯等距映射","authors":"Ming Xiao","doi":"10.1515/crelle-2022-0029","DOIUrl":null,"url":null,"abstract":"Abstract The first part of the paper studies the boundary behavior of holomorphic isometric mappings F=(F1,…,Fm){F=(F_{1},\\dots,F_{m})} from the complex unit ball 𝔹n{\\mathbb{B}^{n}}, n≥2{n\\geq 2}, to a bounded symmetric domain Ω=Ω1×⋯×Ωm{\\Omega=\\Omega_{1}\\times\\cdots\\times\\Omega_{m}} up to constant conformal factors, where Ωi′{\\Omega_{i}^{\\prime}}s are irreducible factors of Ω. We prove every non-constant component Fi{F_{i}} must map generic boundary points of 𝔹n{\\mathbb{B}^{n}} to the boundary of Ωi{\\Omega_{i}}. In the second part of the paper, we establish a rigidity result for local holomorphic isometric maps from the unit ball to a product of unit balls and Lie balls.","PeriodicalId":54896,"journal":{"name":"Journal fur die Reine und Angewandte Mathematik","volume":"45 1","pages":"187 - 209"},"PeriodicalIF":1.2000,"publicationDate":"2022-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Holomorphic isometric maps from the complex unit ball to reducible bounded symmetric domains\",\"authors\":\"Ming Xiao\",\"doi\":\"10.1515/crelle-2022-0029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The first part of the paper studies the boundary behavior of holomorphic isometric mappings F=(F1,…,Fm){F=(F_{1},\\\\dots,F_{m})} from the complex unit ball 𝔹n{\\\\mathbb{B}^{n}}, n≥2{n\\\\geq 2}, to a bounded symmetric domain Ω=Ω1×⋯×Ωm{\\\\Omega=\\\\Omega_{1}\\\\times\\\\cdots\\\\times\\\\Omega_{m}} up to constant conformal factors, where Ωi′{\\\\Omega_{i}^{\\\\prime}}s are irreducible factors of Ω. We prove every non-constant component Fi{F_{i}} must map generic boundary points of 𝔹n{\\\\mathbb{B}^{n}} to the boundary of Ωi{\\\\Omega_{i}}. In the second part of the paper, we establish a rigidity result for local holomorphic isometric maps from the unit ball to a product of unit balls and Lie balls.\",\"PeriodicalId\":54896,\"journal\":{\"name\":\"Journal fur die Reine und Angewandte Mathematik\",\"volume\":\"45 1\",\"pages\":\"187 - 209\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal fur die Reine und Angewandte Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/crelle-2022-0029\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal fur die Reine und Angewandte Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2022-0029","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文第一部分研究了全纯等距映射F=(F1,…,Fm){F=(F_1{, }\dots,{F_m})}从复单位球𝔹n {\mathbb{B} ^n{, }}n{≥2n\geq 2}到有界对称域Ω=Ω1×⋯×Ωm{\Omega = \Omega _1{}\times\cdots\times\Omega _m{直至常数保形因子,其中Ωi ' }}{\Omega _i{^ }{\prime}} s是Ω的不可约因子。证明了每个非常数分量{FiF_i{必须}}映射𝔹n {\mathbb{B} ^n的一般{边界}}点到Ωi {\Omega _i的边界。在论文的第二{部分}},我们建立了从单位球到单位球与李球积的局部全纯等距映射的刚性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Holomorphic isometric maps from the complex unit ball to reducible bounded symmetric domains
Abstract The first part of the paper studies the boundary behavior of holomorphic isometric mappings F=(F1,…,Fm){F=(F_{1},\dots,F_{m})} from the complex unit ball 𝔹n{\mathbb{B}^{n}}, n≥2{n\geq 2}, to a bounded symmetric domain Ω=Ω1×⋯×Ωm{\Omega=\Omega_{1}\times\cdots\times\Omega_{m}} up to constant conformal factors, where Ωi′{\Omega_{i}^{\prime}}s are irreducible factors of Ω. We prove every non-constant component Fi{F_{i}} must map generic boundary points of 𝔹n{\mathbb{B}^{n}} to the boundary of Ωi{\Omega_{i}}. In the second part of the paper, we establish a rigidity result for local holomorphic isometric maps from the unit ball to a product of unit balls and Lie balls.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
6.70%
发文量
97
审稿时长
6-12 weeks
期刊介绍: The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle"s Journal. In the almost 180 years of its existence, Crelle"s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals. It belongs to the very top mathematics periodicals, as listed in ISI"s Journal Citation Report.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信